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MODULE-I  

 
INTRODUCTION: 
 
Indeterminate structures are being widely used for its obvious merits. It may be recalled that, in 

the case of indeterminate structures either the reactions or the internal forces cannot be 

determined from equations of statics alone. In such structures, the number of reactions or the 

number of internal forces exceeds the number of static equilibrium equations. In addition to 

equilibrium equations, compatibility equations are used to evaluate the unknown reactions and 

internal forces in statically indeterminate structure. In the analysis of indeterminate structure it is 

necessary to satisfy the equilibrium equations (implying that the structure is in equilibrium) 

compatibility equations (requirement if for assuring the continuity of the structure without any 

breaks) and force displacement equations (the way in which displacement are related to forces). 

We have two distinct method of analysis for statically indeterminate structure depending upon 

how the above equations are satisfied: 

1. Force method of analysis (also known as flexibility method of analysis, method of consistent 

deformation, flexibility matrix method) 

2. Displacement method of analysis (also known as stiffness matrix method). 

 
In the force method of analysis, primary unknown are forces. In this method compatibility 

equations are written for displacement and rotations (which are calculated by force displacement 

equations). Solving these equations, redundant forces are calculated. Once the redundant forces 

are calculated, the remaining reactions are evaluated by equations of equilibrium. In the 

displacement method of analysis, the primary unknowns are the displacements. In this method, 

first force -displacement relations are computed and subsequently equations are written 

satisfying the equilibrium conditions of the structure. After determining the unknown 

displacements, the other forces are calculated satisfying the compatibility conditions and force 

displacement relations. The displacement-based method is amenable to computer programming 

and hence the method is being widely used in the modern day structural analysis. In general, the 



 

 

 

maximum deflection and the maximum stresses are small as compared to statically determinate 

structure. 

Two different methods can be used for the matrix analysis of structures: the flexibility method, 

and the stiffness method. The flexibility method, which is also referred to as the force or 

compatibility method, is essentially a generalization in matrix form of the classical method of 

consistent deformations. In this approach, the primary unknowns are the redundant forces, which 

are calculated first by solving the structure‟s compatibility equations. Once the redundant forces 

are known, the displacements can be evaluated by applying the equations of equilibrium and the 

appropriate member force–displacement relations. 

 

 
CLASSIFICATION OF FRAMED STRUCTURES 

 

Framed structures are composed of straight members whose lengths are significantly larger than 

their cross-sectional dimensions. Common framed structures can be classified into six basic 

categories based on the arrangement of their members, and the types of primary stresses that may 

develop in their members under major design loads. 

Plane Trusses 

 
A truss is defined as an assemblage of straight members connected at their ends by flexible 

connections, and subjected to loads and reactions only at the joints (connections). The members 

of such an ideal truss develop only axial forces when the truss is loaded. In real trusses, such as 

those commonly used for supporting roofs and bridges, the members are connected by bolted or 

welded connections that are not perfectly flexible, and the dead weights of the members are 

distributed along their lengths. Because of these and other deviations from idealized conditions, 

truss members are subjected to some bending and shear. However, in most trusses, these 

secondary bending moments and shears are small in comparison to the primary axial forces, and 

are usually not considered in their designs. If large bending moments and shears are anticipated, 

then the truss should be treated as a rigid frame (discussed subsequently) for analysis and design. 

If all the members of a truss as well as the applied loads lie in a single plane, the truss is 

classified as a plane truss. The members of plane trusses are assumed to be connected by 

frictionless hinges. The analysis of plane trusses is considerably simpler than the analysis of 



 

 

 

space (or three-dimensional) trusses. Fortunately, many commonly used trusses, such as bridge 

and roof trusses, can be treated as plane trusses for analysis. 

 

 

Plane Truss 
 

Beams 
 

A beam is defined as a long straight structure that is loaded perpendicular to its longitudinal axis.  

Loads are usually applied in a plane of symmetry of the beam‟s cross-section, causing its 

members to be subjected only to bending moments and shear forces. 

 

 
Beam 

 
Space Trusses 

 
Some trusses (such as lattice domes, transmission towers, and certain aerospace structures cannot 

be treated as plane trusses because of the arrangement of their members or applied loading. Such 

trusses, referred to as space trusses, are analyzed as three-dimensional structures subjected to 

three dimensional force systems. The members of space trusses are assumed to be connected by 

frictionless ball-and-socket joints, and the trusses are subjected to loads and reactions only at the 

joints. Like plane trusses, the members of space trusses develop only axial forces. 



 

 

 

 
 

Space Trusses 
 

Grids 
 

A grid, like a plane frame, is composed of straight members connected together by rigid and/or 

flexible connections to form a plane framework. The main difference between the two types of 

structures is that plane frames are loaded in the plane of the structure, whereas the loads on grids 

are applied in the direction perpendicular to the structure‟s plane. Members of grids may, 

therefore, be subjected to torsional moments, in addition to the bending moments and 

corresponding shears that cause the members to bend out of the plane of the structure. Grids are 

commonly used for supporting roofs covering large column-free areas in such structures as 

sports arenas, auditoriums, and aircraft hangars. 

 

 
Grid 



 

 

 

Space Frames 
 

Space frames constitute the most general category of framed structures. Members of space 

frames may be arranged in any arbitrary directions, and connected by rigid and/or flexible 

connections. Loads in any directions may be applied on members as well as on joints. The 

members of a space frame may, in general, be subjected to bending moments about both 

principal axes, shears in principal directions, torsional moments, and axial forces. 

 

 

 
Plane Frames 

 

Frames, also referred to as rigid frames, are composed of straight members connected by rigid 

(moment resisting) and/or flexible connections. Unlike trusses, which are subjected to external 

loads only at the joints, loads on frames may be applied on the joints as well as on the members.  

If all the members of a frame and the applied loads lie in a single plane, the frame is called a 

plane frame. The members of a plane frame are, in general, subjected to bending moments, 

shears, and axial forces under the action of external loads. Many actual three-dimensional 

building frames can be subdivided into plane frames for analysis. 



 

 

 

 

 
 

Plane Frame 
 

FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS 
 

Structural analysis, in general, involves the use of three types of relationships: 
 

● Equilibrium equations, 
 

● compatibility conditions, and 
 

● constitutive relations. 
 

Equilibrium Equation 
 

A structure is considered to be in equilibrium if, initially at rest, it remains at rest when subjected 

to a system of forces and couples. If a structure is in equilibrium, then all of its members and 

joints must also be in equilibrium. Recall from statics that for a plane (two-dimensional) 

structure lying in the XY plane and subjected to a coplanar system of forces and couples, the 

necessary and sufficient conditions for equilibrium can be expressed in Cartesian (XY) 

coordinates. These equations are referred to as the equations of equilibrium for plane structures. 

For a space (three-dimensional) structure subjected to a general three dimensional system of 

forces and couples (Fig. 1.12), 

the equations of equilibrium are expressed as 



 

 

 

FX = 0 , FY = 0 and FZ = 0 

MX = 0, MY = 0 and MZ = 0 

For a structure subjected to static loading, the equilibrium equations must be satisfied for the 

entire structure as well as for each of its members and joints. In structural analysis, equations of 

equilibrium are used to relate the forces (including couples) acting on the structure or one of its 

members or joints. 

Compatibility Conditions 

 
The compatibility conditions relate the deformations of a structure so that its various parts 

(members, joints, and supports) fit together without any gaps or overlaps. These conditions (also 

referred to as the continuity conditions) ensure that the deformed shape of the structure is 

continuous (except at the locations of any internal hinges or rollers), and is consistent with the 

support conditions. Consider, for example, the two-member plane frame. The deformed shape of 

the frame due to an arbitrary loading is also depicted, using an exaggerated scale. When 

analysing a structure, the compatibility conditions are used to relate member end displacements 

to joint displacements which, in turn, are related to the support conditions. For example, because 

joint 1 of the frame is attached to a roller support that cannot translate in the vertical direction, 

the vertical displacement of this joint must be zero. Similarly, because joint 3 is attached to a 

fixed support that can neither rotate nor translate in any direction, the rotation and the horizontal 

and vertical displacements of joint 3 must be zero. 

GLOBAL AND LOCAL COORDINATE SYSTEMS 
 

In the matrix stiffness method, two types of coordinate systems are employed to specify the 

structural and loading data and to establish the necessary force–displacement relations. These are 

referred to as the global (or structural) and the local (or member) coordinate systems. 

Global Coordinate System 

 
The overall geometry and the load–deformation relationships for an entire structure are 

described with reference to a Cartesian or rectangular global coordinate system. When analyzing 

a plane (two-dimensional) structure, the origin of the global XY coordinate system can be 

located at any point in the plane of the structure, with the X and Y axes oriented in any mutually 



 

 

 

perpendicular directions in the structure‟s plane. However, it is usually convenient to locate the 

origin at a lower left joint of the structure, with the X and Y axes oriented in the horizontal 

(positive to the right) and vertical (positive upward) directions, respectively, so that the X and Y 

coordinates of most of the joints are positive. 

Local Coordinate System 
 

Since it is convenient to derive the basic member force–displacement relationships in terms of 

the forces and displacements in the directions along and perpendicular to members, a local 

coordinate system is defined for each member of the structure. 

 

 

DEGREES OF FREEDOM 
 

The degrees of freedom of a structure, in general, are defined as the independent joint 

displacements (translations and rotations) that are necessary to specify the deformed shape of the 

structure when subjected to an arbitrary loading. Since the joints of trusses are assumed to be 

frictionless hinges, they are not subjected to moments and, therefore, their rotations are zero. 

Thus, only joint translations must be considered in establishing the degrees of freedom of trusses. 

The deformed shape of the truss, for an arbitrary loading, is depicted in using an exaggerated 



 

 

 

scale. From this figure, we can see that joint 1, which is attached to the hinged support, cannot 

translate in any direction; therefore, it has no degrees of freedom. Because joint 2 is attached to 

the roller support, it can translate in the X direction, but not in the Y direction. Thus, joint 2 has 

only one degree of freedom, which is designated d1 in the figure. As joint 3 is not attached to a 

support, two displacements (namely, the translations d2 and d3 in the X and Y directions, 

respectively) are needed to completely specify its deformed position 3 . Thus, joint 3 has two 

degrees of freedom. Similarly, joint 4, which is also a free joint, has two degrees of freedom, 

designated d4 and d5. 

Static Indeterminacy of Structures 
 

If the number of independent static equilibrium equations (refer to Section 1.2) is not sufficient 

for solving for all the external and internal forces (support reactions and member forces, 

respectively) in a system, then the system is said to be statically indeterminate. A statically 

determinate system, as against an indeterminate one, is that for which one can obtain all the 

support reactions and internal member forces using only the static equilibrium equations. For 

example, idealized as one-dimensional, the number of independent static equilibrium equations 

is just 1 while the total number of unknown support reactions are 2, that is more than the number 

of equilibrium equations available. Therefore, the system is considered statically indeterminate. 

The following figures illustrate some example of statically determinate and indeterminate 

structures. 

 



 

 

 

Statically determinate structures 
 

the equilibrium equations are described as the necessary and sufficient conditions to maintain the 

equilibrium of a body. However, these equations are not always able to provide all the 

information needed to obtain the unknown support reactions and internal forces. The number of 

external supports and internal members in a system may be more than the number that is required 

to maintain its equilibrium configuration. Such systems are known as indeterminate systems and 

one has to use compatibility conditions and constitutive relations in addition to equations of 

equilibrium to solve for the unknown forces in that system. For an indeterminate system, some 

support(s) or internal member(s) can be removed without disturbing its equilibrium. These 

additional supports and members are known as redundants . A determinate system has the exact 

number of supports and internal members that it needs to maintain the equilibrium and no 

redundants. If a system has less than required number of supports and internal members to 

maintain equilibrium, then it is considered unstable . For example, the two-dimensional propped 

cantilever system in (Figure 1.13a) is an indeterminate system because it possesses one support 

more than that are necessary to maintain its equilibrium. If we remove the roller support at end B 

(Figure 1.13b), it still maintains equilibrium. One should note that here it has the same number of 

unknown support reactions as the number of independent static equilibrium equations. 

 

 
 



 

 

 

Statically indeterminate structures 
 

An indeterminate system is often described with the number of redundants it posses and this 

number is known as its degree of static indeterminacy . Thus, mathematically: 

Degree of static indeterminacy = Total number of unknown (external and internal) forces - 

Number of independent equations of equilibrium 

It is very important to know exactly the number of unknown forces and the number of 

independent equilibrium equations. Let us investigate the determinacy/indeterminacy of a few 

two-dimensional pin-jointed truss systems. Let m be the number of members in the truss system 

and n be the number of pin (hinge) joints connecting these members. Therefore, there will be m 

number of unknown internal forces (each is a two-force member) and 2 n numbers of 

independent joint equilibrium equations ( and for each joint, based on its free body diagram). If 

the support reactions involve r unknowns, then: 

Total number of unknown forces = m + r 
 

Total number of independent equilibrium equations = 2 n 

So, degree of static indeterminacy = (m + r) - 2 n 

 

 

Determinate truss 
 

m = 17, n = 10, and r = 3. So, degree of static indeterminacy = 0, that means it is a statically 

determinate system. 
 



 

 

 

(Internally) indeterminate truss 

m = 18, n = 10, and r = 3. So, degree of static indeterminacy = 1. 

Kinematic Indeterminacy of Structures 

A structure is said to be kinematically indeterminate if the displacement components of its joints 

cannot be determined by compatibility conditions alone. In order to evaluate displacement 

components at the joints of these structures, it is necessary to consider the equations of static 

equilibrium. i.e. no. of unknown joint displacements over and above the compatibility conditions 

will give the degree of kinematic indeterminacy. 

We have seen that the degree of statical indeterminacy of a structure is, in fact, the number of 

forces or stress resultants which cannot be determined using the equations of statical equilibrium. 

Another form of the indeterminacy of a structure is expressed in terms of its degrees of freedom; 

this is known as the kinematic indeterminacy, nk, of a structure and is of particular relevance in 

the stiffness method of analysis where the unknowns are the displacements. 

A simple approach to calculating the kinematic indeterminacy of a structure is to sum the 

degrees of freedom of the nodes and then subtract those degrees of freedom that are prevented by 

constraints such as support points. It is therefore important to remember that in three- 

dimensional structures each node possesses 6 degrees of freedom while in plane structures each 

node possess three degrees of freedom. 

For determinate structures, the force method allows us to find internal forces (using equilibrium 

based on Statics) irrespective of the material information. Material (stress-strain) 

relationships are needed only to calculate deflections. However, for indeterminate 

structures , Statics (equilibrium) alone is not sufficient to conduct structural analysis. 

Compatibility and material information are essential. 

 

 
 

Fixed beam : 

 
Kinematically determinate : 



 

 

 

Simply supported beam Kinematically indeterminate 

 

 
Reaction components prevent the displacements no. of restraints = no. of reaction components. 

 
Degree of kinematic indeterminacy: 

 
Pin jointed structure: Every joint – two displacements components and no rotation 

 

 
 

 
 

Rigid Jointed Structure: 

 
Every joint will have three displacement components, two displacements and one rotation. Since, 

axial force is neglected in case of rigid jointed structures, it is assumed that the members are 

inextensible & the conditions due to inextensibility of members will add to the numbers of 

restraints. i.e to the „e‟ value. 



 

 

 

 

 
 

 

 

 

 
 

 

 

Force-Displacement Relationship 

 

 
Consider linear elastic spring as shown in Fig. Let us do a simple experiment. Apply a force at 

the end of spring and measure the deformation . Now increase the load to and measure the 

deformation . Likewise repeat the experiment for different values of load . Result may be 

represented in the form of a graph as shown in the above figure where load is shown on -axis and 



 

 

 

deformation on abscissa. The slope of this graph is known as the stiffness of the spring and is 

represented by and is given by 

 
 

 
The spring stiffness may be defined as the force required for the unit deformation of the spring. 

The stiffness has a unit of force per unit elongation. The inverse of the stiffness is known as 

flexibility. It is usually denoted by and it has a unit of displacement per unit force. 

 



 

 

 

MODULE-II 

 
Two degrees of freedom (one translation and one rotation) are considered at each end of the 

member. Hence, there are four possible degrees of freedom for this member and hence the 

resulting stiffness matrix is of the order 4x4. In this method counterclockwise moments and 

counterclockwise rotations are taken as positive. The positive sense of the translation and rotation 

are also shown in the figure. Displacements are considered as positive in the direction of the 

coordinate axis. The elements of the stiffness matrix indicate the forces exerted on the member by 

the restraints at the ends of the member when unit displacements are imposed at each end of the 

member. Let us calculate the forces developed in the above beam member when unit displacement 

is imposed along each degree of freedom holding all other displacements to zero. Now impose a 

unit displacement along y' axis at j end of the member while holding all other displacements to 

zero. This displacement causes both shear and moment in the beam. The restraint actions are also 

shown in the figure. By definition they are elements of the member stiffness matrix. In particular 

they form the first column of element stiffness matrix. In Fig., the unit rotation in the positive 

sense is imposed at j end of the beam while holding all other displacements to zero. 

 



 

 

 

 
 

 

 

 

 
 

 

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate the actions 

associated with two ends of the member. For continuous beam problem, if the supports are 



 

 

 

unyielding, then only rotational degree of freedom is possible. In such a case the first and the 

third rows and columns will be deleted. The reduced stiffness matrix will be, Beam (global) 

Stiffness Matrix. 

 

 

The formation of structure (beam) stiffness matrix from its member stiffnessmatrices is 

explained with help of two span continuous beam shown in Fig. Note that no loading is shown 

on the beam. The orthogonal co-ordinatesystem xyz denotes the global co-ordinate system. 

 

 

 
Assembly of Stiffness Matrix and Force Vector 

 
After the evaluation of element stiffness matrix and element force vector for all the elements, 

these quantities need to be " assembled " to get the global stiffness matrix and global force 

vector. As stated at the end of section 6.2, this procedure has two steps: 

 

Expansion of the element stiffness matrix and element force vector to the full size. 

 
i. Addition of the expanded matrices and vectors over all the elements. At this stage, the 

second term of the expression for (equation 6.8) also needs to be added. 



 

 

 

Let us first discuss the first step. Note that equations (6.25) and (6.26) are the expressions for the 

element stiffness matrix and the element force vector  while equations (6.21) and 

(6.22) are the expressions for their expanded versions and  . When we compare 

equations (6.25) with (6.21), we observe that (1,1) component of  occupies the 

position of the expanded matrix . This is because is the global number of the 

local node 1 of the element k. Thus, the first step involves: 

 

 Choose the component , , 

 Find the global number of the local nodes and of the element . Let they 

be and respectively. 

 Then the component occupies the location in -th row and s -th column of the 

 
expanded matrix . Thus, the component goes to the location in the 

expanded matrix. 

 
Repeat the steps (i)-(iii) for the other values of    and     . The remaining components 

of are made zero. 

The first step can be expressed mathematically by introducing a matrix          , called as 

the connectivity matrix , which relates the local and global numbering systems. The number of 

rows in the connectivity matrix is equal to the number of elements and the number of columns is 

equal to the number of nodes per element. Thus, the row index of        denotes the element 

number and the column index of       represents the local node number. The elements of       are 

the corresponding global node numbers. Thus, for the mesh of Fig. 6.1, the connectivity matrix 

becomes 



 

 

 

 

 

 

 

 

 

(6.34) 
 

 

 

 
 

 

 

 

The first row of the connectivity matrix contains the global numbers of the first and second local 

nodes of element 1. The global numbers corresponding to the first and second local nodes of 

element 2 are written in the second row. Continuing in this way, the global numbers of the first 

and second local nodes of element appear in the -th row. The last row contains the global 

numbers associated with the first and second local nodes of the last, i.e. -th element. The 

expression (6.34), in the index notation, can be expressed as 

 

(6.35) 

 

It means the global number of the local node of the element is obtained as the value of the 

component of the connectivity matrix in -th row and -th column. As an example, consider the 

case of     = 3 and    = 2. The expression (6.35) gives . This means 4 is the global 

number of the second local node of the element 3. This can be verified from Fig. 6.1. 

 

Now, the first step of the assembly procedure can be expresses as follows. The expanded 

matrix is obtained from the element stiffness matrix by the relation: 

  (6.36) 

Similarly, to obtain the expanded vector from the element force vector , we use the 

relation: 



 

 

 

 

 
Thus, we use the following procedure: 

(6.37) 

 

 

i. Choose the component 

ii. Find the global number of the local node from the connectivity matrix. Let it be . 

 
iii. Then, the component goes to the location of the expanded matrix. 

 

iv. Repeat the steps (i)-(iii) for the other values of . The remaining components of are 

made zero. 

 

The second-step is straight-forward. After obtaining the expanded versions of the element 

stiffness matrix and the element force vector for all the elements, they are added as follows: 

 

 
(6.38) 

, 

(6.39) 
 

 

The matrix corresponds to the second term of equation (6.8). Note that, the only basis 

function which is nonzero at is . Further, it's value at is 1. Thus 

 

(6.40) 
 

 

Therefore, the vector {P} can be written as 



 

 

 

 

 

 

 

 

 

 

 

 

 
 
Example on Assembly of Stiffness Matrix and Force Vector 

 
As an example, consider the mesh of 6 elements (N = 6) and 7 nodes, shown in Fig. 6.4. 

 

 

 

 

 
Figure 6.4 Mesh with 6 elements 

 
The connectivity matrix for this mesh can be written as: 

 

 

 

 

 

 

 

 

 

Let 

(6.41) 

 

 

 
. 

(6.42) 

 



 

 

 

 

 

, 
(6.43) 

 

And 
 

 

(6.44) 
 

 

be the element stiffness matrix and the element force vector of the elements =1,2,3,4,5,6. 

 

Consider the element 1, i.e. . Note that 

 

 

 
(6.45) 

 

 

 
 

Then as per equation (6.36), components of the stiffness matrix of the element 1, i.e. of , 

occupy the following locations in the expanded matrix : 

  (6.46) 

 
Similarly, as per equation (6.37), components of the force vector of the element 1, i.e. of , 

occupy the following locations in the expanded vector : 

  (6.47) 

 
The remaining components of the expanded matrix and the expanded vector are 

zero. Thus, the matrix becomes: 



 

 

 

 

 

 

 

 
 

 

 

 

 
. 

(6.48) 

 

 

and the vector becomes: 
 

 

 

 

 

 
 

(6.49) 
 

 

 

 

 

 

 

Similarly, we obtain the expanded versions of the element stiffness matrix  and the element 

force vector  for the remaining elements, i.e. for = 2,3,4,5,6. It can easily be verified that, 

for the 3 rd element (i.e. for ), the expanded matrix and the expanded 

vector are: 

 

 

 
 

(6.50a) 



 

 

 

 

 

 

 

 

 

 

 

 

 
This completes the first step. 

(6.50b) 

 

In the 2nd step, we add all the expanded matrices and vectors. Thus, equation (6.38) gives the 

following expression for the global stiffness matrix: 

 

 

 

 

(6.51) 

 

 

 

 

 
Similarly, the sum of the expanded force vector becomes: 

 

 

 

 

 
(6.52) 

 

 

 

 

 

 
However, before we get the global force vector , we need to add the vector to the above 

expression. Since (no. of elements) = 6, the  -th component, i.e. the 7-th component of 



 

 

 

the vector  will be . The remaining components will be zero as per equation (6.41). 

Thus, becomes: 

 

 

 

 
(6.53) 

 

 

 

 
 

Substituting the expressions (6.52) and (6.53) in equation (6.39), we get the following expression 

for the global force vector : 

 

 

 

 
(6.54) 

 

 

 

 

 
Now, as in section 6.3, assume that and (distributed force) are constant for the entire bar. 

 

Further, assume that the length of each element is constant. Let us denote it by h . Then 

 
  (6.55) 

 
Then, equation (6.32) implies that the element stiffness matrix is identical for each 

element and is given by 

 
(6.56) 



 

 

 

Similarly, equation (6.33) implies that the element force vector is identical for each 

element and is given by 

 

  (6.57) 

Substituting the expression (6.56) in equation (6.51), we get 
 
 

(6.58) 

 

 

Further, substituting the expression (6.57) in equation (6.54), we get 

 

 

 

 

 
(6.59) 



 

 

 

In actual calculations, the assembly procedure is appropriately modified to reduce the 

computational time and storage requirements. When, the number of elements is large, storing of 

the expanded matrices and vectors for each element needs a lot of storage requirement. 

Therefore, the process is modified as follows: 

 
 Once the expanded version of the element stiffness matrix of the first 

element is obtained, the element stiffness matrices of other elements are not 

expanded. 

 
 Instead, the locations of the components of the stiffness matrix of the element 

two are determined using equation (6.36). 

 From the connectivity (6.34), it is easy to see that 

 

 

 
(6.60) 



 

 

 

MODULE – III 

 
Structure as a whole or any substructure Must Satisfy 

 
1. Equilibrium of forces. 2. Displacement compatibility. 3. Force-displacement relation. 

 
Matrix Force Method – also called as Flexibility method. Member forces are treated as the basic 

unknowns. Similar to the classical force method, but based on matrix approach. 

 

 

 



 

 

 

 



 

 

 

Examples: 

 

 

 



 

 

 

 

 
 

 



 

 

 

 

 
 



 

 

 

 

 
 

 



 

 

 

 
 

 

 

 
 



 

 

 

 
 



 

 

 

 
 
 



 

 

 

 

 
 

 
 



 

 

 

 
 



 

 

 

 
 
 



 

 

 

 

 

 



 

 

 

 

 
 

 
 

 



 

 

 

 

 

 

 

 



 

 

 

 
 
 

 



 

 

 

 

 
 

 

Analysis of pin-jointed frames by Stiffness Matrix method 
 

Unit displacement in coordinate direction j: 
 



 

 

 

 
 
 

 



 

 

 

 
 

Example : 
 

Analysethe pin-jointed truss as shown in figure by stiffness matrix method. Take area od 

cross-section for all members = 1000 mm2 and modulus of elasticity E = 200 kN/mm2 
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MODULE-V 

 

 
The typical member considered for explaining the procedure is shown in Fig. In this problem we 

seecross section varies in 3 steps A1, A2 and A3. There are three point loads P1, P2 and P3. The 

surface forces arexs1, xs2, and xs3 and Xb is the body force. The surface forces may be due to 

frictional forces, viscous drag orsurface shear. The body force is due to self weight. The material 

of the bar is same throughout. 

Step 1: Selecting suitable field variables and elements: 

In all stress analysis problems, displacements are selected as field variables. In the tension bar or 

columns atany point there is only one component of displacement to be considered, i.e., the 

displacement in x direction.Since there is only one degree of freedom and it needs only Co 

continuity, we select bar element shown in figure. In this case there are only two nodes. 

Step 2: Discritise the continua 

In this problem there are geometric discontinuities at x = 200 mm, 500 mm and 650 mm. There 

is additionalpoint of discontinuity at x = 350 mm, where concentrated load P1 is acting. Hence 

we discritise the continua as shown in figure using four bar elements. 

 



 

 

 

 
 
 

 

 

 
 



 

 

 

For any element local node number is 1 and 2 only, but global coordinate numbers for each 

element aredifferent. For example, local coordinate numbers 1 and 2 for element 3 refers to 

global numbering system 3and 4 respectively. The relation between the local and global node 

number is called connectivity details. Inthis problem the connectivity detail is as shown in figure. 

From this Figure it can be seen that the connectivitydetail can be easily generated also. Thus 

For element (i), 

Local node number 1 = i 

Local node number 2 = i + 1 
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