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MODULE-I

INTRODUCTION:

Indeterminate structures are being widely used for its obvious merits. It may be recalled that, in
the case of indeterminate structures either the reactions or the internal forces cannot be
determined from equations of statics alone. In such structures, the number of reactions or the
number of internal forces exceeds the number of static equilibrium equations. In addition to
equilibrium equations, compatibility equations are used to evaluate the unknown reactions and
internal forces in statically indeterminate structure. In the analysis of indeterminate structure it is
necessary to satisfy the equilibrium equations (implying that the structure is in equilibrium)
compatibility equations (requirement if for assuring the continuity of the structure without any
breaks) and force displacement equations (the way in which displacement are related to forces).
We have two distinct method of analysis for statically indeterminate structure depending upon

how the above equations are satisfied:

1. Force method of analysis (also known as flexibility method of analysis, method of consistent

deformation, flexibility matrix method)
2. Displacement method of analysis (also known as stiffness matrix method).

In the force method of analysis, primary unknown are forces. In this method compatibility
equations are written for displacement and rotations (which are calculated by force displacement
equations). Solving these equations, redundant forces are calculated. Once the redundant forces
are calculated, the remaining reactions are evaluated by equations of equilibrium. In the
displacement method of analysis, the primary unknowns are the displacements. In this method,
first force -displacement relations are computed and subsequently equations are written
satisfying the equilibrium conditions of the structure. After determining the unknown
displacements, the other forces are calculated satisfying the compatibility conditions and force
displacement relations. The displacement-based method is amenable to computer programming

and hence the method is being widely used in the modern day structural analysis. In general, the




maximum deflection and the maximum stresses are small as compared to statically determinate

structure.

Two different methods can be used for the matrix analysis of structures: the flexibility method,
and the stiffness method. The flexibility method, which is also referred to as the force or
compatibility method, is essentially a generalization in matrix form of the classical method of
consistent deformations. In this approach, the primary unknowns are the redundant forces, which
are calculated first by solving the structure®s compatibility equations. Once the redundant forces
are known, the displacements can be evaluated by applying the equations of equilibrium and the
appropriate member force—displacement relations.

CLASSIFICATION OF FRAMED STRUCTURES

Framed structures are composed of straight members whose lengths are significantly larger than
their cross-sectional dimensions. Common framed structures can be classified into six basic
categories based on the arrangement of their members, and the types of primary stresses that may

develop in their members under major design loads.
Plane Trusses

A truss is defined as an assemblage of straight members connected at their ends by flexible
connections, and subjected to loads and reactions only at the joints (connections). The members
of such an ideal truss develop only axial forces when the truss is loaded. In real trusses, such as
those commonly used for supporting roofs and bridges, the members are connected by bolted or
welded connections that are not perfectly flexible, and the dead weights of the members are
distributed along their lengths. Because of these and other deviations from idealized conditions,
truss members are subjected to some bending and shear. However, in most trusses, these
secondary bending moments and shears are small in comparison to the primary axial forces, and
are usually not considered in their designs. If large bending moments and shears are anticipated,
then the truss should be treated as a rigid frame (discussed subsequently) for analysis and design.
If all the members of a truss as well as the applied loads lie in a single plane, the truss is
classified as a plane truss. The members of plane trusses are assumed to be connected by

frictionless hinges. The analysis of plane trusses is considerably simpler than the analysis of




space (or three-dimensional) trusses. Fortunately, many commonly used trusses, such as bridge

and roof trusses, can be treated as plane trusses for analysis.

Plane Truss

Beams

A beam is defined as a long straight structure that is loaded perpendicular to its longitudinal axis.
Loads are usually applied in a plane of symmetry of the beam™s cross-section, causing its

members to be subjected only to bending moments and shear forces.
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Space Trusses

Some trusses (such as lattice domes, transmission towers, and certain aerospace structures cannot
be treated as plane trusses because of the arrangement of their members or applied loading. Such
trusses, referred to as space trusses, are analyzed as three-dimensional structures subjected to
three dimensional force systems. The members of space trusses are assumed to be connected by
frictionless ball-and-socket joints, and the trusses are subjected to loads and reactions only at the

joints. Like plane trusses, the members of space trusses develop only axial forces.




Space Trusses

Grids

A grid, like a plane frame, is composed of straight members connected together by rigid and/or
flexible connections to form a plane framework. The main difference between the two types of
structures is that plane frames are loaded in the plane of the structure, whereas the loads on grids
are applied in the direction perpendicular to the structure™s plane. Members of grids may,
therefore, be subjected to torsional moments, in addition to the bending moments and
corresponding shears that cause the members to bend out of the plane of the structure. Grids are
commonly used for supporting roofs covering large column-free areas in such structures as

sports arenas, auditoriums, and aircraft hangars.




Space Frames

Space frames constitute the most general category of framed structures. Members of space
frames may be arranged in any arbitrary directions, and connected by rigid and/or flexible
connections. Loads in any directions may be applied on members as well as on joints. The
members of a space frame may, in general, be subjected to bending moments about both

principal axes, shears in principal directions, torsional moments, and axial forces.
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Space Frame

Plane Frames

Frames, also referred to as rigid frames, are composed of straight members connected by rigid
(moment resisting) and/or flexible connections. Unlike trusses, which are subjected to external
loads only at the joints, loads on frames may be applied on the joints as well as on the members.
If all the members of a frame and the applied loads lie in a single plane, the frame is called a
plane frame. The members of a plane frame are, in general, subjected to bending moments,
shears, and axial forces under the action of external loads. Many actual three-dimensional

building frames can be subdivided into plane frames for analysis.
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Plane Frame
FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS
Structural analysis, in general, involves the use of three types of relationships:
e Equilibrium equations,
e compatibility conditions, and
e constitutive relations.
Equilibrium Equation

A structure is considered to be in equilibrium if, initially at rest, it remains at rest when subjected
to a system of forces and couples. If a structure is in equilibrium, then all of its members and
joints must also be in equilibrium. Recall from statics that for a plane (two-dimensional)
structure lying in the XY plane and subjected to a coplanar system of forces and couples, the
necessary and sufficient conditions for equilibrium can be expressed in Cartesian (XY)
coordinates. These equations are referred to as the equations of equilibrium for plane structures.
For a space (three-dimensional) structure subjected to a general three dimensional system of

forces and couples (Fig. 1.12),

the equations of equilibrium are expressed as




FX=0,FY=0and FZ=0
MX =0, MY =0and MZ=0

For a structure subjected to static loading, the equilibrium equations must be satisfied for the
entire structure as well as for each of its members and joints. In structural analysis, equations of
equilibrium are used to relate the forces (including couples) acting on the structure or one of its

members or joints.
Compatibility Conditions

The compatibility conditions relate the deformations of a structure so that its various parts
(members, joints, and supports) fit together without any gaps or overlaps. These conditions (also
referred to as the continuity conditions) ensure that the deformed shape of the structure is
continuous (except at the locations of any internal hinges or rollers), and is consistent with the
support conditions. Consider, for example, the two-member plane frame. The deformed shape of
the frame due to an arbitrary loading is also depicted, using an exaggerated scale. When
analysing a structure, the compatibility conditions are used to relate member end displacements
to joint displacements which, in turn, are related to the support conditions. For example, because
joint 1 of the frame is attached to a roller support that cannot translate in the vertical direction,
the vertical displacement of this joint must be zero. Similarly, because joint 3 is attached to a
fixed support that can neither rotate nor translate in any direction, the rotation and the horizontal

and vertical displacements of joint 3 must be zero.

GLOBAL AND LOCAL COORDINATE SYSTEMS

In the matrix stiffness method, two types of coordinate systems are employed to specify the
structural and loading data and to establish the necessary force—displacement relations. These are

referred to as the global (or structural) and the local (or member) coordinate systems.

Global Coordinate System

The overall geometry and the load-deformation relationships for an entire structure are
described with reference to a Cartesian or rectangular global coordinate system. When analyzing
a plane (two-dimensional) structure, the origin of the global XY coordinate system can be

located at any point in the plane of the structure, with the X and Y axes oriented in any mutually




perpendicular directions in the structure”s plane. However, it is usually convenient to locate the
origin at a lower left joint of the structure, with the X and Y axes oriented in the horizontal
(positive to the right) and vertical (positive upward) directions, respectively, so that the X and Y

coordinates of most of the joints are positive.

Local Coordinate System
Since it is convenient to derive the basic member force—displacement relationships in terms of
the forces and displacements in the directions along and perpendicular to members, a local

coordinate system is defined for each member of the structure.
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DEGREES OF FREEDOM

The degrees of freedom of a structure, in general, are defined as the independent joint
displacements (translations and rotations) that are necessary to specify the deformed shape of the
structure when subjected to an arbitrary loading. Since the joints of trusses are assumed to be
frictionless hinges, they are not subjected to moments and, therefore, their rotations are zero.
Thus, only joint translations must be considered in establishing the degrees of freedom of trusses.

The deformed shape of the truss, for an arbitrary loading, is depicted in using an exaggerated




scale. From this figure, we can see that joint 1, which is attached to the hinged support, cannot
translate in any direction; therefore, it has no degrees of freedom. Because joint 2 is attached to
the roller support, it can translate in the X direction, but not in the Y direction. Thus, joint 2 has
only one degree of freedom, which is designated d1 in the figure. As joint 3 is not attached to a
support, two displacements (namely, the translations d2 and d3 in the X and Y directions,
respectively) are needed to completely specify its deformed position 3 . Thus, joint 3 has two
degrees of freedom. Similarly, joint 4, which is also a free joint, has two degrees of freedom,
designated d4 and d5.

Static Indeterminacy of Structures

If the number of independent static equilibrium equations (refer to Section 1.2) is not sufficient
for solving for all the external and internal forces (support reactions and member forces,
respectively) in a system, then the system is said to be statically indeterminate. A statically
determinate system, as against an indeterminate one, is that for which one can obtain all the
support reactions and internal member forces using only the static equilibrium equations. For
example, idealized as one-dimensional, the number of independent static equilibrium equations
is just 1 while the total number of unknown support reactions are 2, that is more than the number
of equilibrium equations available. Therefore, the system is considered statically indeterminate.
The following figures illustrate some example of statically determinate and indeterminate

structures.
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Statically determinate structures

the equilibrium equations are described as the necessary and sufficient conditions to maintain the
equilibrium of a body. However, these equations are not always able to provide all the
information needed to obtain the unknown support reactions and internal forces. The number of
external supports and internal members in a system may be more than the number that is required
to maintain its equilibrium configuration. Such systems are known as indeterminate systems and
one has to use compatibility conditions and constitutive relations in addition to equations of
equilibrium to solve for the unknown forces in that system. For an indeterminate system, some
support(s) or internal member(s) can be removed without disturbing its equilibrium. These
additional supports and members are known as redundants . A determinate system has the exact
number of supports and internal members that it needs to maintain the equilibrium and no
redundants. If a system has less than required number of supports and internal members to
maintain equilibrium, then it is considered unstable . For example, the two-dimensional propped
cantilever system in (Figure 1.13a) is an indeterminate system because it possesses one support
more than that are necessary to maintain its equilibrium. If we remove the roller support at end B
(Figure 1.13b), it still maintains equilibrium. One should note that here it has the same number of

unknown support reactions as the number of independent static equilibrium equations.
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Statically indeterminate structures

An indeterminate system is often described with the number of redundants it posses and this
number is known as its degree of static indeterminacy . Thus, mathematically:

Degree of static indeterminacy = Total number of unknown (external and internal) forces -
Number of independent equations of equilibrium

It is very important to know exactly the number of unknown forces and the number of
independent equilibrium equations. Let us investigate the determinacy/indeterminacy of a few
two-dimensional pin-jointed truss systems. Let m be the number of members in the truss system
and n be the number of pin (hinge) joints connecting these members. Therefore, there will be m
number of unknown internal forces (each is a two-force member) and 2 n numbers of
independent joint equilibrium equations ( and for each joint, based on its free body diagram). If

the support reactions involve r unknowns, then:

Total number of unknown forces =m +r
Total number of independent equilibrium equations =2 n

So, degree of static indeterminacy =(m +r) -2n

Determinate truss

m = 17, n = 10, and r = 3. So, degree of static indeterminacy = 0, that means it is a statically
determinate system.




(Internally) indeterminate truss
m =18, n =10, and r = 3. So, degree of static indeterminacy = 1.
Kinematic Indeterminacy of Structures

A structure is said to be kinematically indeterminate if the displacement components of its joints
cannot be determined by compatibility conditions alone. In order to evaluate displacement
components at the joints of these structures, it is necessary to consider the equations of static
equilibrium. i.e. no. of unknown joint displacements over and above the compatibility conditions

will give the degree of kinematic indeterminacy.

We have seen that the degree of statical indeterminacy of a structure is, in fact, the number of
forces or stress resultants which cannot be determined using the equations of statical equilibrium.
Another form of the indeterminacy of a structure is expressed in terms of its degrees of freedom;
this is known as the kinematic indeterminacy, nk, of a structure and is of particular relevance in

the stiffness method of analysis where the unknowns are the displacements.

A simple approach to calculating the kinematic indeterminacy of a structure is to sum the
degrees of freedom of the nodes and then subtract those degrees of freedom that are prevented by
constraints such as support points. It is therefore important to remember that in three-
dimensional structures each node possesses 6 degrees of freedom while in plane structures each

node possess three degrees of freedom.

For determinate structures, the force method allows us to find internal forces (using equilibrium
based on Statics) irrespective of the material information. Material (stress-strain)
relationships are needed only to calculate deflections. However, for indeterminate
structures , Statics (equilibrium) alone is not sufficient to conduct structural analysis.

Compatibility and material information are essential.

Fixed beam :

Kinematically determinate :




Simply supported beam Kinematically indeterminate

A
|4y Any joint — Moves in three directions in a plane structure
s ll 5 Two displacements 6x in x direction, dy in y direction, 6
& e rotation about z axis as shown.
/s
v d A ();/ =0
I,-’?"\T e B Roller Support :
o © 5. r=1,8y=0,0&3xexist—-DOF=2 e=1
;:77 7
A é'\ =
3 |
/ /,;\, - — (;1 Lo Hinged Support :
7y 6 r=2,0x=0,0y=0,0exists-DOF=1 e=2
A :’ \r =0
VA - Fixed Support :
»" T S = ~“V \'“ 7 - :"v‘
g1 2R r=3,6x=0,6y=0,0=0 DOF=0 e=3
6=0

Reaction components prevent the displacements no. of restraints = no. of reaction components.
Degree of kinematic indeterminacy:
Pin jointed structure: Every joint — two displacements components and no rotation

S Dk=2j-e where, e = no. of equations of compatibility
= no. of reaction components

Rigid Jointed Structure:

Every joint will have three displacement components, two displacements and one rotation. Since,
axial force is neglected in case of rigid jointed structures, it is assumed that the members are
inextensible & the conditions due to inextensibility of members will add to the numbers of

restraints. i.e to the ,.e* value.




" Dk=3j-e where, e = no. of equations of compatibility
= no. of reaction components +
constraints due to in extensibility

Example 1 : Find the static and kinematic indeterminacies

r —l 4, m — 2, j —t 3
Ri A 5
-— _> ~
T e
4 4 [

AV

=(3x2+4)-3x3=1
Dk=3j-e
=3x3-6=3
1.e. rotations at A.B, & C 1.e. Oa, b & O¢
are the displacements.
(e = reaction components + inextensibility conditions =4 + 2 = 6)

Displ lationshi

[

Force(P) | Stiffness (k)

Deflection(u)

Consider linear elastic spring as shown in Fig. Let us do a simple experiment. Apply a force at
the end of spring and measure the deformation . Now increase the load to and measure the
deformation . Likewise repeat the experiment for different values of load . Result may be

represented in the form of a graph as shown in the above figure where load is shown on -axis and




deformation on abscissa. The slope of this graph is known as the stiffness of the spring and is

represented by and is given by

FP=ku

The spring stiffness may be defined as the force required for the unit deformation of the spring.
The stiffness has a unit of force per unit elongation. The inverse of the stiffness is known as

flexibility. It is usually denoted by and it has a unit of displacement per unit force.

|
“T% P=hu




MODULE-II

Two degrees of freedom (one translation and one rotation) are considered at each end of the
member. Hence, there are four possible degrees of freedom for this member and hence the
resulting stiffness matrix is of the order 4x4. In this method counterclockwise moments and
counterclockwise rotations are taken as positive. The positive sense of the translation and rotation
are also shown in the figure. Displacements are considered as positive in the direction of the
coordinate axis. The elements of the stiffness matrix indicate the forces exerted on the member by
the restraints at the ends of the member when unit displacements are imposed at each end of the
member. Let us calculate the forces developed in the above beam member when unit displacement
is imposed along each degree of freedom holding all other displacements to zero. Now impose a
unit displacement along y' axis at j end of the member while holding all other displacements to
zero. This displacement causes both shear and moment in the beam. The restraint actions are also
shown in the figure. By definition they are elements of the member stiffness matrix. In particular
they form the first column of element stiffness matrix. In Fig., the unit rotation in the positive

sense is imposed at j end of the beam while holding all other displacements to zero.
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Unit rotation about z atend j
unit displacement along ' axis at end kis imposed and
corresponding restraint actions are calculated. Similarly in Fig. . unit
rotation about ' axis at end &k is imposed and corresponding stiffness

coefficients are calculated. Hence the member stiffness matrix for the beam
member is

1 2 3 4
T 12EI.  6EI. | 12EI. 6EI. |1
= 5
GEI . 4EI. | GEI 2EI_ |2
fl=|--Lo L __1 L' __ L__
12ET 6EI. | 12EI 6EI_ |3
_ 22 : _0E )12
L rr v r L’
GEI . 2EI. 1 6EI 4EI. |4
L L | r L |

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate the actions

associated with two ends of the member. For continuous beam problem, if the supports are




unyielding, then only rotational degree of freedom is possible. In such a case the first and the
third rows and columns will be deleted. The reduced stiffness matrix will be, Beam (global)
Stiffness Matrix.

AEI. | 2FI
|
| _L__ L
k1= v agr
D

The formation of structure (beam) stiffness matrix from its member stiffnessmatrices is
explained with help of two span continuous beam shown in Fig. Note that no loading is shown
on the beam. The orthogonal co-ordinatesystem xyz denotes the global co-ordinate system.
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Continuous beam

Assembly of Stiffness Matrix and Force Vector

After the evaluation of element stiffness matrix and element force vector for all the elements,
these quantities need to be " assembled " to get the global stiffness matrix and global force

vector. As stated at the end of section 6.2, this procedure has two steps:

Expansion of the element stiffness matrix and element force vector to the full size.

i.  Addition of the expanded matrices and vectors over all the elements. At this stage, the

second term of the expression for () (equation 6.8) also needs to be added.




Let us first discuss the first step. Note that equations (6.25) and (6.26) are the expressions for the
. . [;CU‘«? ] (f U‘«?} . .
element stiffness matrix and the element force vector while equations (6.21) and
. . . [K'ULJ] {FU‘«J}
(6.22) are the expressions for their expanded versions and . When we compare
. : {) :
equations (6.25) with (6.21), we observe that (1,1) component of [£™] occupies the

. . L&) L .
position U6 E) of the expanded matrix [£] This is becausekis the global number of the
local node 1 of the element k. Thus, the first step involves:
R 1
» Choose the component “¥  i=1 J=
» Find the global number of the local nodes ! and J of the element % . Let they

be ¥ and ¢ respectively.

(k)
= Then the component % occupies the location in # -th row and s -th column of the

[Ki-“«l pR fld

expanded matrix 1 Thus, the component ™¥ goes to the location “*** in the

expanded matrix.

Repeat the steps (i)-(iii) for the other values of ¢ and J . The remaining components

(k)
of [£7] are made zero.

[C] , called as

The first step can be expressed mathematically by introducing a matrix
the connectivity matrix , which relates the local and global numbering systems. The number of

rows in the connectivity matrix is equal to the number of elements and the number of columns is
equal to the number of nodes per element. Thus, the row index of [T denotes the element

number and the column index of [ represents the local node number. The elements of [TT are
the corresponding global node numbers. Thus, for the mesh of Fig. 6.1, the connectivity matrix

becomes




[C]= (6.34)
i k41 keth—row

N N+

The first row of the connectivity matrix contains the global numbers of the first and second local
nodes of element 1. The global numbers corresponding to the first and second local nodes of
element 2 are written in the second row. Continuing in this way, the global numbers of the first
and second local nodes of element:appear in the &h row. The last row contains the global
numbers associated with the first and second local nodes of the last, i.e}'-th element. The

expression (6.34), in the index notation, can be expressed as
r=C% (6.35)

It means the global number of the local node?of the element # obtained as the value of the

component of the connectivity matrix in %h row and -th column. As an example, consider the

C

case of # = 3 and ¥ = 2. The expression (6.35) gives © ~ - = 4. This means 4 is the global

number of the second local node of the element 3. This can be verified from Fig. 6.1.
Now, the first step of the assembly procedure can be expresses as follows. The expanded

0y ()
matrix [£" 1 is obtained from the element stiffness matrix [< ] by the relation:

L) _ g (K = = :
Ky =k where r=">Cy, 5= Cy; (6.36)

=1 atherwise.

- . (k) 3
Similarly, to obtain the expanded vector ™ from the element force vector & , We use the

relation:




Ff =% where r =y,

=0 otherwise.

(6.37)

Thus, we use the following procedure:

koo
i.  Choose the component Jii=1
ii.  Find the global number of the local node ¥ from the connectivity matrix. Let it be 7 .
A L :
iii.  Then, the component ~i goes to the location “» of the expanded matrix.
. &
iv.  Repeat the steps (i)-(iii) for the other values of . The remaining components of F} are

made zero.

The second-step is straight-forward. After obtaining the expanded versions of the element

stiffness matrix and the element force vector for all the elements, they are added as follows:

Ay
[K]=2[K™] (6.38)
(F} = f‘,{ﬂ‘“} +{FP) (6.39)
k=1

The matrix £} corresponds to the second term of equation (6.8). Note that, the only basis

function which is nonzero at ¥ =L s ¢N+1. Further, it's value at * =< is 1. Thus

Pg | =0 for i=12..N

¥=F

(6.40)
=r Jar i=N+1

Therefore, the vector {P} can be written as




(0] 1zt — row

(Fy=9-71 (6.41)

0 Neh — ronw
| &+ gk — row

Example on Assembly of Stiffness Matrix and Force Vector

As an example, consider the mesh of 6 elements (N = 6) and 7 nodes, shown in Fig. 6.4.

Element numhber
* - » - - - -

1 2 3 4 5 6 7 Global node n,

X1 X9 X3 X4 X5 Xg X7y Coordinates in glohal notation
Glohal degrees of freedom

111 112 113 114 115 116 ].17,1r

Figure 6.4 Mesh with 6 elements

The connectivity matrix for this mesh can be written as:

(6.42)

oL e ) 2
e B R U R N P T

Let




k_l:-t:l kl:-t:l
[kik-:l] — |: 11 12 (643)

G
And
(k)
(&) f
if }:{f:m} (6.44)

be the element stiffness matrix and the element force vector of the elements ¥ =1,2,3,4,5,6.
Consider the element 1, i.e. £=1_ Note that

@ i=lj=lgves r=Cf=0C=1ls=Cy =0 =1,
@yi=lj=2gves r=CU =0 =ls=Cg=0 =4 (6.45)
Gji=2,j=lgves r=Cy=0Cy=2,8=Cy =0 =1,
Gvyi=2,j=2gives r=Cy=0CUp=25=0=C =12

{1
Then as per equation (6.36), components of the stiffness matrix of the element 1, i.e. of [ ],

{1
occupy the following locations in the expanded matrix Lap

W _y gt Ry gl il ) el
'&'_11 _}Kll : '5:13 _}Klﬂ : kﬂl _}Kﬂl : kﬂ? _}Kﬂi (646)

13
Similarly, as per equation (6.37), components of the force vector of the element 1, i.e. of U :

. L (%)
occupy the following locations in the expanded vector 7

FARREEY L B P o/ (6.47)

Fas

{1}
The remaining components of the expanded matrix [T and the expanded vector 0 are

&™)

zero. Thus, the matrix becomes:




EM kM 0 0 0 0 0
EEN 0 0 0 0 0
o 0 00000
KM=l 0o o0 00 00 D (6.48)
o 0 00000
o 0 00000
0 0 0000 0]
and the vector (¥ " becomes:
e
fgill
0
(FM =< 0 ¢ (6.49)
0
0
. U r

- . . : LY
Similarly, we obtain the expanded versions of the element stiffness matrix [£"" 1 and the element

(%)
force vector W} for the remaining elements, i.e. for’ 2,3,4,5,6. It can easily be verified that,

for the 3 rd element (i.e. for =3 ), the expanded matrix

[FGJ

vector

for e B D o B o e

Lo B s B o A o N B = D

{3
(<] and the expanded

] are:

0 0 000
0 0 000

LR 000

OB 0 o0 0 (6.50a)
0 0 000
0 0 000
0 0 0 0 0]




(F™) =

3
A
28

This completes the first step.

(6.50D)

In the 2" step, we add all the expanded matrices and vectors. Thus, equation (6.38) gives the

following expression for the global stiffness matrix:

[
kll

ki
i kg A
0y
0 0
0 0
0 0
0 0

0
ki3
ki +
Ky
0
0
0

0
0
'
k' + k!
ki
0
0

Similarly, the sum of the expanded force vector becomes:

3 (F) =
=T

A

04 4
Y
FE 4 g
FH 4 g
O+ A
7

0
0
0
!
AR
k3
0

= O

0
)

0
0
0
0

0

(514 g i6) 206
"Fcﬂﬂ +k11 klﬂ

(6
'Ecﬂl

(6
k'

(6.51)

(6.52)

However, before we get the global force vector ) , We need to add the vector £} to the above

expression. Since &' (no. of elements) = 6, the (V41 _h component, i.e. the 7-th component of




the vector “£% will be £. The remaining components will be zero as per equation (6.41).

Thus, (£ becomes:

o)
]
]

(Py=20% (6.53)
0
]
\.P_-

Substituting the expressions (6.52) and (6.53) in equation (6.39), we get the following expression

for the global force vector L)

A
f2i13+f1i23
: AR
(Fy =2 @F N+ (B =9 A4 (6.54)

- A+ A
A+ A
SR

Now, as in section 6.3, assume that £4 and J (distributed force) are constant for the entire bar.

Further, assume that the length %x. of each element is constant. Let us denote it by h. Then

ho=h=4 (6.55)

%)
Then, equation (6.32) implies that the element stiffness matrix [£™] s identical for each

element and is given by

1 -1
[k“"’]:%ll 1} for k=123456 (6.56)




Similarly, equation (6.33) implies that the element force vector (FiEy is identical for each

element and is given by

Sk

(k) _
AN >

1
{1} For k=123456 (6.57)

Substituting the expression (6.56) in equation (6.51), we get

1 -1 0 0 0 0]
-1 141 -1 0 o0
o -1 1+1 -1 O o0
[K]=% o0 -1 1+1 -1 0 0
¢ 0o 0 o -1 141 -1 0
0o 0 -1 141 -1
00 o -1 1]
(6.58)
1 -1 0 0 0]
-1 2 -1 0 0
oo -1 2 -1 0 0 0
_ 24 o0 -1 2 -1 0 0
g o0 0 -1 2 -1 0
o000 -1 2 -1
o0 0 0 0 -1 1]
Further, substituting the expression (6.57) in equation (6.54), we get
1
2
2
(Fy = Jo# o2 (6.59)
2 2
2
1422
IZI'EE,




In actual calculations, the assembly procedure is appropriately modified to reduce the
computational time and storage requirements. When, the number of elements is large, storing of
the expanded matrices and vectors for each element needs a lot of storage requirement.

Therefore, the process is modified as follows:

. (1] . . .
= Once the expanded version [£°] of the element stiffness matrix of the first

element (=1 is obtained, the element stiffness matrices of other elements are not

expanded.

. : _ f2)
= Instead, the locations of the components of the stiffness matrix [£'] of the element

two = 2) are determined using equation (6.36).

= From the connectivity (6.34), it is easy to see that

k{fj — (2.2) location af the exp anded matrix,
kfgj — (2.3) location of the exp anded mairizx, (6.60)
kﬁj — (3,2) lovation af theexp anded matrix,
kgﬁ’ — (3.3) lncation af the exp anded matriz




MODULE - Il

Structure as a whole or any substructure Must Satisfy
1.Equilibrium of forces. 2. Displacement compatibility. 3. Force-displacement relation.

Matrix Force Method — also called as Flexibility method. Member forces are treated as the basic

unknowns. Similar to the classical force method, but based on matrix approach.

S.No. Type of displacement, A Flexibility, & Stiffaess, k
1. Axial L AE
AE L
7. Transverse
3
{a) Far-end fixed L _IZEI
12Er IE
3
(b) Far-end hinged L 3E1
3. Bending or flexural
(a) Far-end fixed L 4E1
4EF L
(b) Far-end hinged L 3ET
3EI L
4. Torstonal L GK




Step Force method
(lexbility or compatibility
method)

Displacement method
(stiffness or equilibrium
method)

. Determine the degree of static indeter-
minacy (degree of redundancy), n.

. Choose the redundants.

- Assign coordinates 1, 2, ..., n to the
redundants,

. Remove all the redundants to obtain the
released siructime.

- Determine [A,], the displacemenrs a1
the coordinates due to the applied loads
acting on the released structure.

- Determine [A], the displacements at
the coordinates due to the redundants
acting on the released structure.

. Compute the neg displacements at the

coordiantes,
TA]=[A]+ [Ag]

. Use the condtions of compatiblility of dis-

placements to compute the reduntands.
C [PY =181 ([AHAL)

. Knowing the reduadants, compute the
intexral member florces by using equa-
tioms of statics,

Determine the degree of kinematic in-
determinacy, (degree of freedom), n.

Identify the independent displacement
components,

Assign coordinates 1, 2, ..., 7 to the in-
dependent displacement components.
Prevent all the independent displacement

components to obtain the restrained
structure.

Determine [P°], the forces reqyired at the
coordinates in the restrained structure
due to the loads ether than those acting
at the coordinates.

Determine [P,], the forces required at
the coordinates in the unrestrained
structure to cause the independent
displacement components [A].

Compute the net forces at the coordinates.
L PI=IPTH IR

Use the conditions of cq_uilibrium of
forces to compute the displacements.

[Al=[kIMLPY-[P)

Krnowing the displacements, compute the
intemnal member forces by using skope-
deflection equations.




Examples:

Determine the degree of static indeterminacy of the pin-jointed plane frame shown in
Fig. 1.8.

Solution
Total number of independent extemal reaction components,
r=2+14+1=4
Using Eq. (1.7), degree of external indeterminaéy,
D, =4-3=1
Number of joints, j = 16
Actual number of members, m = 35

Using Eq. (1.8), minimum number of members required to preserve geometry of
the frame,

m=2x16-3=29
Using Eq. (1.10}, degree of internal indeterminacy,
D;=35-29=6
Hence, degree of static indeterminacy
D =D +D;=1+6=7

Altemnatively, the degree of static indeterminacy may be computed using Eq. (1.16).
Substituting

m=35 r=4 j=16
into Eq. (1.16)

D, =3544-2x16=7

Deternine the degree of static indeterminacy of the rigid-jointed plane frame shown in
Fig. 1.9.

Solution
Total number of independent extemal reaction components,
' r=2x3+2+1=9
Using Eq. (1.7), degree of external mdeterminacy,
B_=9-3=6




The number of cuts required Lo obtain an open ’_ _T
configurmation, ¢ = 12. For instance, cuts may be made
in all the beams except in the topmost beams. Using
Eq. (1.12). degree of internal indeterminacy ]

Di=3x%x12=36
Hence, degree of static indeterminacy, —

D =D, +D,

=64+36=42
Alternauvely, the degree of static indeterminacy may
be compated using Eq. (1.18). Substituting 757 ite
) m = 35
r=9 .
=24 Fig. 1.9

into Eq. (1.18),
D

&

3x354+9-_3%x24=42

Determine the degree of static indeterminacy of the bow-string girder shown in F ig. 1.10.
Assume all joints to be rigid.

Fig. 1.10

Solution

Total number of independent external reaction components, » = 3. Degree of external
indeterminacy, '

D,=3-3=0
The number of cuts required to obtain an open configuration, ¢ = 8, For instance, a cut
may be made in the horizontal member in each cell. Using Eq. (1.12), degree of internal
indeterminacy,

D;=3%x8=24
Hence, degree of static indeterminacy,

Dy=D,+D,;=0+24=24 :
Alternatively, the degree of static indeterminacy may be computed using Eq. (1.18).
Substuting - o
m=123 r=3 j=16
into Eq. (1.18),

D, =3x234+3-3%x16=24




Dererrﬁine the degree of static indeterminacy of the rigid-jointed building frame shown
in Fig. 1.13(a).

Solution

Total number of independent external reaction components,

r=6x6=36 ) !

: | /3 36 10
/lf" 4;2 ;4 1?
' / _ 411/_'-}15/ 915
S Twh| ke '
g POz
)

(a (b)

i JNA

Fig. 1.13

Degree of extemal‘indeterminacy,
D, =36-6=30
Number of cuts required to obtain an open configuration, ¢ = 16 [Fig. 1.13(b)].
Using Eg. (1.13), degree of internal indeterminacy,
D, =6x16=96
" Hence, degree of static indeterminacy of the frame,
D,=D,+D;=30+9=126
Alternatively, the degree of static indeterminacy may be computed using Eq. (1.19).
Substitating
m=39 r=36 ;=24
into Eq. (1.19),

D, =6x39+36-6x24=126

Develop th:e stiffness matrix for the end-loaded prismatic member AB with reference to
the coordinates shown in Fig. 4.4(a).

: 1 Comment on the relevance of the chosen
coordinates. Examine the reciprocity of

he stiffness matrix.
® @

_-?\:‘—___‘_‘EL\——»@ 0 ’4 £ T\LE 0
X e
@ Ef Constant @ iE_f\}{E,ﬂ 2";5,'
L T
(a)

(b)




Ao=1 1 Ag= .
0 F'l TN B\é“f"“ﬁmh l\ 0
tu
2Ent Y afm BENL? 6EL2
(c) (d)
125118 12El113 0 0
=X
Y <<
0—¢ I_: 0 AE/L -—{,_-‘(——, 3——AE;L
- BEWi2 6E/t2 0 0
(e} (f)
0 0
AEIL «—d | ’ a—»- AEIL
0 70
As=1
(@)

The stiffness matrix of the member can be developed by giving a unit displacement
successively at each coordinate without any displacement at other coordinates. The
forces at coordinates 1 to 6, when a unit displacement is given successively at each of
the coordinates 1 to 4, may be computed by using the equations given in Sec. 2.14. For
example, when a unit displacement is given at coordinate 1, the forces at coordinates 1
t0 6, which constitute the elements of the first column of the stiffnes matrix, are

kyj = if_j kyy = %

6EI 6ET
kyy = — "LT kg = 'LT
ks = kg1 =0

Similarly, the elements of the second, third and fourth colamms of the stiffness matrix
can be determined.

When a unit displacement is given at coordinate 5 without any displacement at
other coordinates, the forces evidently are '

AE _AE
kys =kys =kys = by =0 k55="f kﬁ‘_T

These forces constitute the elements of the fifth colunm of e stiffné'ss mattix. The
sixth column of the stiffness matrix may be generated in a simitar manner by gving 4
unit displacement at coordinate 6. -




The deformed shape of the member, when unit displacement is given succesively at
coordinates 1 to 6, together with the resulting forces required to sustain the deformed
shape of the member, are shown in the free-boy diagrams in Fig. 4.4(b) to (g). Thus the

stiffness matrix of member AB with reference to the chosen coordinates may be written as
‘

afEr 2EI 6FEI 6FEl
=0 = — Q 0
L L L L
2ET1 4FE] 6El 6ET
fodndel 2= -—— — 0 0
L L L L
oFEl 6El 12E1 12E1
2 7 o 0
(k] = (4.27)
6El 6E! 12ET 12E]
I r 0 J% 0 0
AE AE
0 0 0 . 0 _— ——
L L
0 0 0 o _AE AE
L L L
where A = area of cross-section of the member
L = length of the member.
Two steel bars AB and BC, each having a cross- @ @

sectional area of 20 mny’, are connected in series A %} B, , Cc
as shown in Fig. 4.10. Develop the flexibility and

stiffness matrices with reference o coordinates 1 <) Paje—2M 5|
and 2 shown in the figure. Verify that the twe

matrices are the invervse of eachy other. Take E = Fig. 4.10
200 kN/mm? ¥
Solution
L 1000
= = 0.25 mm/kN
Axial flexibility of bar AB Ak 20 30 % 200
AE
Axial stiffness of bar AB = T 4 kN/mm
L 2000
fal flexibil = =225 = 05 movkN
Axial flexibility of bar BC = 2E = 30 % 200

AE
Axial stiffness of bar BC = T = 2 kKN/mm




The flexibility matrix can be developed by applying a unit force successively at
coordinates 1 and 2 and evaluating the displacements at coordmates 1 and 2_ To generate
the fiest column of the flexibility matrix, apply 2 unit fomee # coardinate . The
displacements at coordinates 1 and 2 are

Oy = &, =025 mm

Stmilarly, to generate the second column of the flexibility matrix, apply a unit force
at coordinate 2. The displacements at coordinates 1 and 2 are

8y, = 0.25+ 0.5 = 0.75 mm
i
Hence, the required flexibility matrix 18] is given by the equation
5 0.25 025
O1=1 925 075
The stiffness matrix can be developed by giving a unit displacement successively at
coordinates 1 and 2 without any displacement at the other coordinate and determ; ning the
forces required at coordinates 1 and 2. To generate the first column of the stiffness matrix,
give a unit displacement at coordinate 1. The forces required at coordinates 1 and 2 are
To generate the second column of the stiffness matrix, give a vnit displacement at
coordinate 2. The forces required at coordinates 1 and 2 are

kyy, = 2kN
Hence, the required stiffness matrix [£] is given by the equation
(6 2
k] =
[X] 2 2}

Multiplying the flexibility and stiffness matrices,

5k—_0'25 0256 -2] [1 o
[]“‘_0.25 075]|-2 2| {0 1

~As the product of the two matrices is a unit matri X, the two matrices are the inverse
of each other. '

Develop the flexibility and stiffness matrices Jor prismatic member AB with reference
to the coordinates shown in Fig. 4.11 (a ) for the following support conditons:
(i) hinged support at A and roller support at B
(i) fixed supports at A and B
(iif) fixed support at A and roller support at B,
Verify in each case that the flexibility and stiffness matrices are the inverse of each
other. '




Solution

(i) The snpport conditions are shown in Fi
can be developed by applyin
and 2 and evaluating displacements
first column of the flexibility matrix,
Egs (A. 71) and (A.72) of Appendix

2 are

A B8
3m 6m
fe—rpe————|
El Canstant
{a)
ko
’__}J‘\kﬂ
N
=
(c)-
@
Ag /l\@ _EB
3m 6m
e
El Constant
(e}
oz
4 e 3
4 e F
1
(@
kay
4.0 ~Jat
TRy
=

Fig. 4.11

g. 4.11(b). The flexibility matrix
g a unit force successively at coordinates 1
at coordiantes 1 and 2. To generate the
apply a unit force at coordinate 1. Using
A, the displacement at coordinates 1 and

3 m 6m
(b)
ko2
/1\ kiz
TR
(d)
kot
N
3 4 E

&
U
it
El /\@
AiSm, 6m 7{;}78

I el }
EiConstant
(h}




3x 3% - =L
3)(951[ 3 3X3X9+9]—E!

‘SII

5, - 39-3x9-6) _ 2
_ T 3x9El K
To generate the second colemn of the flexibility matrix, apply 2 unit force at

coordinate 2. Using Eqs (A.63) and (A.64) of Appendix A, the displacements
at coordinates | and 2 are

39-309-6) ¢

%2 = T3%9EI  El
3¥x60 12
o0 = 3398  E
Hence, the required flexibility matrix [8] is given by the equation

112
[6125[2 12}

The stiffness matrix can be developed by giving a unit displacement successively
at coordinates 1 and 2 without any displacement at the other coordinate and
determining the forces required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a unit displacement at coordinate 1 as
shown in Fig. 4.11(c). The forces required at the coordinates are

ky = gj"::i+i":3~-j~r-=I.51:"f."'
3 6
ky, = —%+%=—0.25E!

To generate the second column of the stiffness matrix, give a unit displacement
a coordinate 2 as shown in Fig. 4.11(d). The forces required at coordinates 1
and 2 are

3EI  3EI

g = 5 + v = —0.25E7

3EL 3% = 0.125ET

kyy = 23




Hence, the required stiffness matrix [k] is given by the equation

1.500 —0.250
—0250 0.125

Multiplying the flexibility and stiffness matrices,

L[4 2], 1500 02501 |1 0]
I = Eria 1217 -0250 o0.125] [0 1
As the product is a unit matﬁx, the two matrices are the inverse of the each
other.
(ii) The support conditions are shown in Fig. 4.11(e). The flexibility matrix can
be developed by applying a unit force successively at coordinates 1 and 2
and evaluating the displacement at coordinates | and 2. To generate the

first column of the flexibility matrix, apply a unit force at coordinate I. Using

Eqs (A.113) and (A.114) of Appendix A, the displacements at coordinates 1
and 2 are

3{9‘-3}{91-3x3><9+3><32) 2

5I 1=
9 El 3E/

2

£

A 2 2
n= gy O C-6=15

To generate the second column of the flexibilz i i
t ' ty matrix, apply a unit force at
coordinate 2. Using Eqgs. (A.104yand (A.105) of Appendix A, the displacements

at coordinates | and 2 are
- 4
32 2
——— (9 ~ 3)%(9 - 6) = —~_.
2 xS El 4 ) 3EI
39-3° 3
Oy = 3x9 Bl 3El
Hence, the required flexibility matrix [8] is given by the equation

2 111
Ty

The stiffpms matrix can be develaped by giving a unit displacement successively
at coordinates 1 and 2 without any displacement at the other coordinate and

determining the i:orces' required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a wnit displacement at coordinate 1 as

shown in Fig. 4.11 (f). The forces required at coordinates 1 and 2 are

6|2.=

4ET 4EI
kyy = — +— =2EI
o 3 6
i 3
6EI GE}
= - + =
kZI 2 P Q.5E1




To generate the second column of the stiffness matrix, give a unit displacement

at coordinate 2 as shown in Fig. 4.11(g). The forces required at coordinates 1
and 2 are

6EI GEI
k?l = - —3-2—"'?‘:—05.5!

12Ef  12ET
ey, = 3f’+ - = 0SE

Hence, the required stiffness matrix [k] is given by the equation

20 - 05
-05 0.5

Multiplying the flexibility and stiffness matrices,

2711 2 -—o0s] [1 o}
[oJ¢k) = ﬁ?[r 4 }Ef[- 05 ﬂ‘j}z[ﬂ 1}

As the product is 2 unit matrix, the two matrices are the tnverse of each other.

[k] = EI[

(iii) The support conditions are shown in Fig. 4.11(h). The flexibility matrix can be
developed by applying a unit force successively at coordinates ] and 2 and
evaluating the displacements at coordinates 1 and 2. To generate the first column
of the flexibility matrix, apply a unit force at coordinate 1. Using Eqs (A.35)
and (A.36) of Appendix A, the Lﬁsplacements at coordinates 1 and 2 are

6“:4—-:;3E7[4><93—12><92><3+L2><9><32—3x33]
X .
1]
T 12E!
-'32 2 2 3
@,:m[szB—axg X3+5x9x3 -3
s
__1
" GEI

To generate the second column of the flexibility matrix, apply a_unit force at
coordinate 2. Using Eqgs (A.30) and (A.31) of Appendix A, the displacements
at coordinates 1 and 2 are




32

612=m}-[2x93—6x92x3+5x9x32—33]
x
1
T 6EI
R 3 2 ¢ 2 a3
622= m[4x93—9x9 X3I+6xXx9x3 —31
Al
~ 3EI

Hence, the required flexibility matrix [8] is given by the equation

1 11 14
18)=Torr| 14 44

The stiffness matrix can be developed by giving a unit displacement successively
at coordinates 1 and 2 without any displacement at the other coordinate and
determining the forces required at coordinates 1 and 2. To generate the first
column of the stiffness matrix, give a unit displacement at coordinate 1 as
shown in Fig. 4.11(i). The forces required at coordinates 1 and 2 are

4ET + 3ET  11E1

3 6 6

—6ElI 3El! —TE!
+ =
3? 6 12

kn =

ky =

To generate the second column of the stiffness matrix, give a unit displacement
at coordinate 2 as shown in Fig. 4.11(j). The forces required at coordinates 1
and 2 are

6El 3EI _ ~TE
P 6 12

12E1 | 3EI _ 1El
kZE = 33 : 63 24

Hence, the required stiffness matrix [k] is given by the equation
EI [ 44 -14
=% [—M 11]
Multiplying the flexibility and stiffness matrices,

1 [t 4] e[ 44 <14 [1 0
Bk = oprl14 44|24 |-14 11| |0 1




Deveiop the flexibility and stiffness matrices for beam AB with reference to the
coordinates shown in Fig. 4.12(a). '

Solution

The flexibility matrix can

be developed by applying a unit force successively at

the coordinates and evaluating the displacements at all the coordianates. To generate
the first column of the flexibility matrix, apply a unit force at coordinate 1. Using
Eqs (A.14), (A.15) and (A.16) of Appendix A, the displacements at the coordinates are

10
o, = ET“_
10x1) 50
% = oE T H
10
5};[ = EJ
5. _ 102x20-10) 150
T 6El Ef
@ @ o kg
2 O @ 5 i e
ﬂ 10 m 10m EI \2—\:
E{ Constant Aq=1
(@) (b)
oo haz ka3 ka3
% - " ‘-‘k12 /"L\kaz a K13 -’Jw\ ‘N\}\Ea
o P }
{'\52=1 a Ag=1
(c) (d)
Kog Kea
e S
3 RS Y
(e)

Fig. 4.12




To generate the second column of the flexibility matrix, aply a unit force at coordinate

2. Using Egs. (A.9), (A.10) and (A.11) of Appendix A, the displacements at the
coordinates are

5. _ 10x10_ 50
27 2FErl El
5, 1001000
17T 3Er 3E]
10 x10 _ 50

Op = ~Hpr = EI

10%(3 X 20— 105 _ 2500
6EI 3ET

Op =

To generate the third column of the flexibility matrix, apply a unit force at coordinate
3. Using Egs (A.5) to (A.8) of Appendix A, the displacements at the coordinates are

10 102 50
s = &y = SEr T E
s 20 o200 o
3T OET BT 21 EI

To generate the fourth column of the tiexibility matrix, apply a unit force at coordinate
4. Using Egs (A 1) to (A.4) of Appendix A, the displacements at the coordinates are

10(2 X 20 - 10) , 150

%= T m vy T m
G_:oz(sxm-m)_zsoo
U em w0
200 200
%= T m
_ 20 _ 3000
"7 3B 3EI

Hence, the required flexibility matrix [8] is given by equation

30 150 30 450

1 156 1000 150 2500
81= 351 30 I50 60 600
450 2500 600 8000




-

The snffness mafrix can be developed by giving a unit displacement successively at
each coordgwte without any displacement at the other coordinates and determining the
force.:s mgu:red at all the coordinates. To generate the first column of the saffness
matr_lx, give a unit displacement at coordinate 1 as shown in Fig. 4.12(b). The forces
required at the coordinates are

s AEI  AFE] 5
= — — =),
ky =gt g TO8BE
6EI  GEI _
k= 7 T 107
2EL
k3| = ‘ﬁ = 0-25
6EI
kﬂ - — T'OT =-0.%Ef

I'o generate the second column of the stiffness matrix, give a unit displace-ment at
>oordinate 2 as shown in Fig. 4.12(c). The forces required at the coordinates are

(. _ OEL _6EI
27100 107
12EF | 12E1
= —5 +—r— = 0.02
=0 T e e
GEI
k32 = —l-?— = 0.06E!
12E1
kp= =g =~ 0.012E

To generate the third column of the stiffness matrix, give a unit displacement at
coordinate 3 as shown in Fig. 4.12(d). The forfes required at the coordinates are

2EI

T 0.2EI
kyy = % = 0.0651_'_.
ks =- i‘%’- = 0.4EI
= GEI = - 0.06EI




To generate the fourth column of the stiffness matrix, give a unit displacement at
coordinate 4 as shown in Fig. 4.12(¢). The forces required at the coordinates are

— 6EI
4= 02

= — 0.06ET

— 12EI
= = -~ 0.012EJ
kg 10°

= 6Kl
kg = gz~ = ~ O06EI

12E7
kg = ~ = 0.012E7

Hence, the required stiffness matrix [k] is given by the equation

0.800 0 0.200 - 0.060

(K] = Er 0 0.024 0.060 - 0.012
0.200 0.060 0.400 - 0.060

- 0.060 -0.012 - 0.060 0.012

In this example the computational effort required for developing the flexibility matrix
is approximately the same as that for the stiffness matrix.

Analysis of pin-jointed frames by Stiffness Matrix method
Unit displacement in coordinate direction j:
Consider the Figure 11.48.

AAT =1
Therefore, the shortening of member AB = 44" sin € — sin ©




Thercfore, the axial compressive force P developed is given by

W
AE = sin

or P = »AT,:'-sinO

ky = I’cnx&-—=-—'~‘f *xcos 0s8in @
ky = PsinO:ilixsinzo

ke = —Pcos0 =~ {‘l-‘éxsmﬁcose

ky = —Psin@=- A{ * §in”0
Joint stiffness will be

k= Z['ilf- x cos B sin 0]

r . M
k= zf -",—F‘xqm'(\]

i ["’—E xsinOconQ]
i [iLi sm’o]
Member Forces

Let the final position of member AB be A" B as shown in Figure 11.49. Note that, for deriving
the expression, A’ B’ is selected such that all the displacements are positive.

o [P
a2
// s
s
/

rd
/ /
l/' /'

/ y
/ “'/._.
/4 A,
S 1

L

Figure 11.49: Final position of member AB.




Shoriening of member due 1o displacement at A
= Aux o By + Ay sin O,
Extension of the member due 1o displacement at B

= Agx C0s O,4 + Agy sin O,y
Therefore, the extension of member AB

= (Agx =~ Apx) cos B8 + (Ayy - Apy) sin O,y

AE .
PA. a T"A.x 'Au)m 0“ *‘A.v -AAV)NQG“]

Example :

Analysethe pin-jointed truss as shown in figure by stiffness matrix method. Take area od
cross-section for all members = 1000 mm? and modulus of elasticity E = 200 kN/mm?

N
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Solution Degree of freedom = 2 o
The coordinates are selected as shown in Figure 11.50(b). Tuble 11.4 is prepared.
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Figure 11.50(b): Coordinates selected.




Tauble 11.4: Calculations for assembling stiffness

AE AE 2 AE AL . .
p = s =sin"®
Member I 0 7 cos” 8 T cosBsin @ T sin
OA 40 150" 30 -17.321 10
OB 56.569 135° 28.245 2K 285 24 285
oc 80.0 90° 0 0 | 00
oD 69.282 60° 17.32] 30 51.962
¥ 75 606 15 606 170,247
AE
ky = ZT"O“ 0= 75.606
| AE :
ky = kyp = Y —;—-xcmesinﬂl- 15.606
A, 9
kyy = 2 szin'ﬂ]~l?0.247
A 40
P | = |-60
Therefore, the stiffness equation s
|

A, ( 1 J|70.247 15.606 ][ 40 ]
a, | = (1262812 )| 15.606 75.606 || 60
0.465
= -0310

AE
= T[(on -Bax)€08 00, +(Agy ~ Aay)sin B, |

Poa
= 40 [(0 - 0.465) cos 150° + (0 + 0.310) sin 150°]
= 22.308%kN

Pop = sa.ssvt‘w - 0.456) cos 135° + (0 + 0.310) sin 135°)
= 31.000 kN :

Poc = 80 [(0 - 0.465) cos 90° + (0 + 0.310) sin 90°)
= 24.8 kN

Pop = 69.282 [(0 - 0.465) cos 60° + (0 + 0.310) sin 60°)

= 2,492 kN
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MODULE-V

The typical member considered for explaining the procedure is shown in Fig. In thisproblem we
seecross section varies in 3 steps Al, A2 and A3. There are three point loads P1, P2 and P3. The
surface forces arexsl, xs2, and xs3 and Xb is the body force. The surface forces may be due to
frictional forces, viscous drag orsurface shear. The body force is due to self weight. The material
of the bar is same throughout.

Step 1: Selecting suitable field variables and elements:

In all stress analysis problems, displacements are selected as field variables. In the tension bar or
columns atany point there is only one component of displacement to be considered, i.e., the
displacement in x direction.Since there is only one degree of freedom and it needs only Co
continuity, we select bar element shown in figure. In this case there are only two nodes.

Step 2: Discritise the continua

In this problem there are geometric discontinuities at x = 200 mm, 500 mm and 650 mm. There
is additionalpoint of discontinuity at x = 350 mm, where concentrated load P1 is acting. Hence

we discritise the continua as shown in figure using four bar elements.

+— — 4+—

_ﬁq—q'—-q—‘




1 2

C) i I co— - =X
X X, X X,

= —1 =0 =1

Hence nodal displacement vector is

CEN

In finite element analysis the nodes may be numbered in any fashion, but to keep the band width minimum
we number the nodes continuously. In this problem there are five nodes and in all such problem there is
definite relationship between number of nodes and number of element 1.e. Number of node = Number of
elements + 1.

There is only one degree of freedom at each node. Hence total degree of freedom in the problem is
= Number of nodes x degree of freedom at each node
=5x1=5

ie. [8Y =[6, 8, 8 8, &]
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For any element local node number is 1 and 2 only, but global coordinate numbers for each
element aredifferent. For example, local coordinate numbers 1 and 2 for element 3 refers to
global numbering system 3and 4 respectively. The relation between the local and global node
number is called connectivity details. Inthis problem the connectivity detail is as shown in figure.
From this Figure it can be seen that the connectivitydetail can be easily generated also. Thus

For element (i),

Local node number 1 = i

Local node number2 =i+ 1

Nodes
Element 1 2 Local numbers
1 1 2
) 2 3 Global numbers
3 3 4
4 4 5

Step 3. Sclect Interpolation Functions
In chapter 5 we have seen interpolation functions [N] 1s given by

{u} =[N]{6},
and for bar elements
[N]=[N, N,], where

Nl:A_‘:

and N, = =

Step 4: Element Properties

In this step we assemble element stiffness matrix and nodal force vector of the element. At any point in the
element,

{”} =u {g} = ¢ and {O’} = o, all in x direction, which is the only direction for these elements.

From strain displacement relations,




du d 51} dN, dN )
gr=€=—=—|N N7 et =1 2 -
1€} dx dx[ : _] {53 |: dx  dx ] {53}
1 0
=, {5:}

=[5] {gi} where [B] = i [-1 1]
{o} =0 =[D]{e}

=Fg, sinceD=FE

Element stiffness matrix

(K= [Jf (e [olie av

!
_ Y-l _E4 |1 -l
_QQ[JEQ[lqu_Iszll}h

e

E4|1 -1 -
- [ }[x]:; _EA[1 -l
711 L= 1

Consistant Load

Equivalent nodal loads are to be calculated for each type of load acting on the element

(i) Body Force: X, is the only body force in this case. In case of self weight X, = p where P is unit weight

of the material. From equation 9.26 the consistant load due to this body force is given by

(L= [T v j{jj Loy as

since C= % - % (x - x.)

we get g = %d\' or dx = ]2—"0’5

and limits of integration will be from —1 to 1




2 L
= 4=d
{}" :[ 1+¢& Py 2 g
2
I-& 1 I el
Now ——2p, ALdE="24X, |E-2-| =24
fzpbzi q h[é 2L n AP
Similarly J.%pb A%di = %Alc P
A[epb 1
F} =
(1= %522 |

Noting that 4/ is volume of the element, we find that half the self weight goes to each node.

(ii) Surface Load: If X is the intensity of surface load, 7= X x perimeter is the load per unit length of the

element. Then consistant load corresponding to it is

{F},= [[{M} x.ds

/ 1
N, N, /8
- .!-{N,}Td" - J. {Nz}nidé

!
:.[ 12 TslidézT_]el
1+8) "2 > 1

Thus the consistant load for such surface traction is also half the total load at each node.
(iii) Point Load: Point loads can be directly added to nodal force vector.

. : . s B
After finding consistant load due to all types of loads, element nodal force vector {F}E = {F‘l } can be

assembled.

Step 5. Global Properties
From step 3, we have




For each element their position corresponding to global rows and columns are indicated above. Now
global stiffness matrix {k} of size 5 x 5 is to be assembled. First this is made a null matrix and then one by
element stiffness matrix is added to corresponding element in global matrix. After first element stiffness
matrix 1s placed in global stiffness matrix, it looks as-

i —i 0 0 0
lel ]el
_;/1_1__ i4.L 0O 0 0
E lel ]el
0 0 0
0 0 0
0 0 00 0

After second element stiffness is placed in global stiffness matrix, it looks as

A - 0 0 0
[el lel
E el el el e2
o -k L0
[82 lel
0 0 0 0
. 0 0 0 0 0]
Final stiffness matrix in global system
- 4 4 =
— -1 0 0 0
lel lel
iy Ay g 0 0
[el ]el ]ez ]e2
A A A, A,
K=E| 0 e 0
lez [ez ]e3 ]e3
0 0 _A3 4 é _é
[e3 ]eS le4 ]e4
0 0 0 _ﬁ ﬁ
[e4 [e4 o




Thus we find the stiffness matrix is a symmetric matrix and its half the band width is equal to maximum
difference in nodes of any element multiplied by degrees of freedom at each node plus 1, that is 2 in this
problem

Load Vector {F}

Load vector {F}'=[F, F, F, F, F]

Let the element load vectors be

Then global load vector {F}is given by

Fy
Fio + By
{F}: Fy + 15,
Fyp + Iy

Fp

Thus we can assemble global / structure stiffness equation as

K] 9} =113

5x5  Sxl 5

Step 6: Boundary Conditions

In this problem there is only one boundary conditioni.e. §, = 0 or itmay have specified value. There are two
methods of imposing the boundary conditions:

(1) Elimination Approach

(11) Penalty Approach

Step 7: Solution of Simultaneous Equations

After imposing the boundary conditions, the simultaneous equations 11.13 are to be solved. Any method of
solving simultaneous equations can be employed. Gauss elimination is commonly employed. In many programs
to save the memory in storing stiffness matrix 4, half the band width of the matrix 1s stored and Choleski’s
decomposition method employed. The solution gives the unknown nodal values.

Step 8: Additional Calculations

The additional calculations required may be to find strains and stresses at various points. These calculations
are carried out element by element. From the list of global nodal values § , for each element nodal values &,
and J, of the element under consideration is picked up. Then displacement within the element.




u=[N{8}. =[N ] gi

since &’ coordinate of the point under consideration is known ‘«’ can be found. Then
{e} = e = [Bl{é],
and {o}l=0= [D] {8}e = E¢e
= E[B]{s},
Calculation of Reactions

Another important stress resultant required in the stress analysis 1s the reactions at support. This can be found
from the equilibrium conditions of the support. For example, in this problem support is at node 1 and at this
point displacement &, is zero. Hence if R is the reaction of the support in direction 1,then

o1 Ry =k O+ k30, + k305 + k1,6, + k565 — F
In general By= &8+ By + - + kb z— 55

Where N is total number of nodal displacements

Example:

The thin plate of uniform thickness 20 mm, is as shown in Fig. 11.5(a). In addition to the self
weight, the plate is subjected to a point load of 400N at mid-depth. The Young's modulus £ =2 % 10° N/mm?

and unit weight p = 0.8 x 107* N/mm?. Analyse the plate after modeling 1t with two elements and find the
stresses in each element. Determine the support reactions also.
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Solution:
A, =125 x 20 = 2500 mm’
A4, =100 x 20 = 2000 mm?
The plate 1s modeled with two elements as shown in Fig. 11.5 (b)

[£] _E4 (1 1] _2x10°x 2500 1 -1 _ser] B 10
o PR T 250 -1 1 -10 10

e

E4, [1 -1 2x10°%x2000[ 1 -1 J 8 -8
[k],,=— DR A =2x10°
2 1, |-l 1 250 -1 1 -8 8

e

10 -10 0 10 -10 0
 [k]=]-10 10+8 -8|=|-10 18 -8
-8 8 0 -8 8

Consistant Loads: Due to body force only

{F},= Fal _ y A}
€ Fe2 b 2 1

R} Fip| _ 08x107*x 2500 x 250 [1] _ [25
‘" | R, 9 1 25

Fy] 08 x107*x 2000 x 250 (1 20
{F}ez = = —
F, 2 1 20




Apart form these there 1s a 400N concentrated load at node 2. Hence,

25 25
[F} =25+ 20 + 400 | = {445
20 20

Hence the stiffness equation 1is,

10 -10 01(8, 25
2x10°[-10 18 -8|48,=1445
0 -8 8|85 20

D

The boundary condition is §, = 0 . Hence the reduced equation is,

|18 -8][d, 445 -10x 0 445
2% 1 = =
-8 8 ||0; 20-0x0 20

18 8 5 445
2 % 10° 2l =
0 S—EXS{&;} 20+ﬁx445
18 - 18
. 18 -8 (8, 445
1.€. 2 %10 =
{0 4.444}{63} {217.778}
217.778

=245% 10~ mm

> 4444 x 2 % 10°

from equation 1, we have

2 x 10°[185, — 85 ;] = 445
2% 10°[185, - 8 x 245 x 107*] = 445

185, - 196 x 107 = 2225 x 107

§,=2325%x10"*mm




from the relation

&= E[B] {5}8 we get,

o | 0
o,=2x10——|-1 1 - 5
1 250[ ]{2.325 % 10—4} 0.186 N/mm

s 1 2325 107*
my= 2% 10 E[_l 1] 545 % 10-4 =0.01 N/mm?

Reaction at Support:

1 0

5
R=[ky ky k3]i6,0—F=2x10"[10 —10 0]{2325%x 107} — 25
0

J

245 %107

(V%)

- R,= 490N

[Obviously 1n this simple problem reaction = total load].

Example:

Determine the nodal displacements and element stresses by finite element
formulation for the following figure. Use P=300 k N; A;=0.5 m% Ay=1 m%
E=200 GPa

NS
S
) _ 2
300 kN A,=05m
o
------ A > A, S A= m’
X E=200GPa
N~
N




Solution

The structure is modeled with 3 axial loaded elements connected by nodes 1-2,
2-3 and 3-4 as shown below

1 2 3

Stiffness matrices of elements 1, 2 and 3 are given by

I L ] [

where, k;=A;E/L; =0.5 x 200 x 10°/1.0= 1.0 x 10"
k,=A,E =1 %200 x 10°/2.0=1.0 x 10"

_k2
k2

and

Assembled stiffness matrix is obtained by adding corresponding terms as,

are

[k, -k 0 0 1 -1 0 0]
k =[K]-= “k o krky =k 0=l 2 -0
: 0 -k, k+k, —-k,| 0 -1 2 -l
0 0 -k, ky | 0 0 -1 ]

P =1

0
300,000
0
R

-.‘

u,
u,

>;q=<

U,

Uy

Corresponding assembled nodal load vector and nodal displacement vector

After applying boundary condition, ug=0, the fourth row and fourth column
are removed resulting in




1 -1 0]y, 0
1.0x10" -1 2 —1|Ju, +={300,000

~

0 -1 2||u, 0

Solving the above set of equations gives,
u=6x10°m; hp=6x10°m; u3=3 x 10°m
Stress in element-1,

U,

o1=E[Bil{q}=E[-1/L; 1/L] { } =0 N/m’

u,

Stress in element-2,

u,

o, =E[By] {92} =E [-1/L, 1/L,]{ }=—6><105N/m2

u,
Stress in element-3,

u,

0;=E[Bs] {q:}=E[-1/L, 1/L,] { } =-3 x 10’ N/m’

Uy

Example:




An axial load P=200x10* N is applied on a bar as shown. Using the penalty
approach for handling boundary conditions, determine nodal displacements,
stress in each material and reaction forces.

! P 2 I | -A,=2400 mm’; E, =70 x 10" N/m’

2 - A, - 600 mm2; E, - 200 x 10" N/m’

AN
ANNARNNANNNY

f¢— 200 —bl— 300 —le— 200 —¥

Solution

1 2 3 4

Considering a 3-element truss model, stiffness matrices of elements 1, 2 and 3
(connected by nodes 1, 2; 2,3 and 3, 4 respectively) are given by,

S IR E S B S

where
ki=AE, /L, = 2400 x 70 x 10*/200 = 84 x 10*
and k.= A,E,/L,=600 x 200 x 10°/300 = 40 x 10*
Assembiled stiffness matrix is obtained by adding corresponding terms as,
[k, -k 0 0 | (84 -84 0 0
K]- -k K+k -k 0| L 1-84 84440 -40 0
10 -k k+k, -k,| 0 —-40 40+80 -84
0 0 -k, k, 0 0 ~-84 84

L - e -




Corresponding assembled nodal load vector and nodal displacement vector
are

0 ) (U,
200,000 u,

P=x i qQ=7 >
0 u,

0 | k“4J

For the penalty approach, C = max(k,) x 10°=124 x 10*

Since the bar is fixed at nodes | and 4, the equations are'then modified using
C as,

0 ) [ 84+124x10° -84 0 0 (u,)
JZOO,OOOT:]OL‘ — 84 124 —40 0 Juz{
0 0 —40 124 — 84 u,
0| i 0 0 -84 84+124x10%||u,

From4" eqn. 0= 10*[-84 u; + (84 + 124 x 10%) uy]
or ug = 6.7737 x 107 u,

From3“eqn 0= 10'[-40u,+ 124 u;— 84 uy]

substituting for uy from the above,

u;=0.3226 u,




2" eqn now becomes,
200,000 = 10* [-84 u; +124 u, — 40 u;]
or —0.64u,+ 1.111u;=0.2
1*¥ equation gives,
0=10"[(84+ 124 x 10")u, -84 u,]
From these two equations,
=12195x 10°mm; u,=0.180034 mm
Substituting in 3™ and 4™ eqn.,
u;=0.058079 mm; us=3.9341 x 10° mm
Reactions, R,=—Cu; = (124 x 10%.(1.2195 x 107°) =-151.22 x 10° N
R, =—-Cus = (124 x 10%).(3.9341 x 10°) = —48.78 x 10° N

Stresses in the elements,

o; = Eig,=EBiq:

-5
=70x]03l:—-1— _1_} 1.2195x10
200 200 || 0.180034
=63.01 N/mm?
6= E282 C= E2B2q2_3

_a00xio}| =L 1 ][0-180034
300 300 | |0.058079

= —81.3 N/mm?
03=Ese3=EB|q3.4

7010} —1 1] 0.058079
200 200 ]3.9341x10°®

=-20.3 N/mm?>




Elimination method

Since the bar is fixed at nodes 1 and 4, corresponding rows and columns of the
assembled stiffness matrix are deleted, resulting in {P} = [K]r {u}r

200,000 o] 124 —40]|u,
or =10
0 -40 124]|u,
Solving these two simultaneous equations, we get
u, = 155/861=0.180023 mm

and u3; = 50/861=0.058072 mm

Reactions can now be obtained by substituting the nodal displacements in
the deleted equations of the assembled stiffness matrix.

Ri=10[(84+124x10) -84 0 0] [ w u; uy

=-84 x 10* u, =_84 x 10* (155/861) =151219N
Ry=10[0 0 -84 (84+124x10% J[u; uw, u; uyl
= -84 x 10" uy =-84 x 10* (50/861) =48780N

These reaction values are identical to hose obtained by the penalty approach

Check : For force equilibrium of the structure,

R, + Ry = Applied load P =200 kN
This equation is satisfied with the results obtained

Note that results by penalty approach match very closely with those by
elimination approach.

Example:




Consider the truss element with the coordinates 1 (10,10) and 2 (50,40). If the
displacement vector is g=[15 10 21 43]" mm, then determine (i) the vector q’
(ii) stress in the element and (iii) stiffness matrix if E=70 GPa and A=200 mm’

Solution :

(i) The nodal displacement vector in local coordinate system

{q’}z[’ m 0 "]{q}

0 0 / m

where / = (x,-X,)/L. and m=(y,-y,)/L are the direction cosines of the element
Length of the element,
L=(x, —X,)* +(y, - ¥1)* =(50-10)? + (40— 10)* =50 mm

(50-10) 4 (40-10) 3

l: :—; m=sE———=——

50 5 50 5
15)

)= 4/5 3/5 0 0 ]j10] [90/5

V=0 0 ass 3512107 2135
\431

(i)  Stress in the element, c=E¢= E[:L—l l] {q’}

—1 1790/
=70,000| — —
50 50]|213/5

=34.44 x 10° N/mm?




(iii) Stiffness matrix of the element,

AE
Kl=—"
[k)=2

Example

—

I? /m
Im  m?
~1? —Im
—Ilm -m?

-
—Im
12
Im

—lm—

Im

m2

al

[ 16 12 —-16 —12]
200x70,000] 12 9 —12 -9
T 50x25 |-16 —12 16 12
-12 -9 12 9]

Determine the stiffness matrix, stresses and reactions in the truss structure
shown below, assuming points 1 and 3 are fixed. Use E =200 GPa and A =
1000 mm®.

Solution

Stiffness matrix of any truss element is given by

I? im -1 —Im
2 . —m?2
[K]:—@- lm2 m 12m m
L |-/ —-Im [ /m
| —/m -m? im mz_
| 4
!
I 1
[1]
500mm Y
I
l 3
»X
|1— 750 mm e

P=350kN




In the given problem, L, =750 mm; L, = \/[7502 +500%] =250 \/ﬁ

(x, -x,)

For element-1, /=2 _jand m=22"1_
| Ll
10 -1 0]
AE| 0 0 0 0
[K]l:_
750/-1 0 1 0
00 0 0
f95:266ﬁ7x103
750
For element-2, 1:(x3—x2): 3 and m=33_-Y2_ 2
L, \/B L, J13
9 6 -9 -6
AE 6 4 -6 -4
[K]2:
250x13x/13/-9 -6 9 6
-6 -4 6 4]
-~f§i———=1707x103

25013413




The assembled stiffness matrix is given by appropriate addition of stiffness

coefTicients of the two elements,

[K]=10°

[ 266.67
0
—266.67
0
0

0

0 ~266.67

0 0

0 266.67-153.63
0 -102.42

0 —153.63

0 —102.42

0
0
102.42
68.28
-102.42
—68.28

After applying boundary conditions that u;, = v, =

displacement relationships reduce to  {P}p = [K]z {u}r

0
- 50000

}_103 [— 266.67 +153.63

102.42

102.42] [u,
68.28 | |v,

Solving these two simultaneous equations gives

u, =02813 mm and v,=-1.154 mm

0
0
-153.63
-102.42
153.63
102.42

Uy = V3 =

0
0
~102.42
~68.28
102.42
68.28 |

0, the load-

Displacements of element-1 in local coordinate system are given by

]
0

{ql’}=[

00 0
01 0]

( 0)

-1.154]

0 0
ey
0.2813 0.2813

Stress in element-1, o, =E ¢, =E[-1/L 1/L] {ql}
=200 x 10° x 0.2813 / 750 = 75 N/mm?>




Displacements of element-2 in local coordinate system are given by
0.28313]

(0,7} 313 2/413 0 o} ~1.154 {——0.406}
2 - <

0 0 3J13 2413 0 0
k 0]
. -1 1
Stress in element-2, 6, =E&, =E| — — {qz’}
L L
=200x10° xm =90.08 N/mm?
250413

Reactions at the two fixed ends are obtained from the equations of the
;sembled stiffness matrix corresponding to the specified zero displacements

[0
R, ) [266.67 0 —266.67 0 0 0 || o
R, 0 0 0 0 0 0 0.2813
< !Y>=103 4 >
R, 4 0 0 -153.63 —102.42 153.63 102.42| |-1.154
Ry | 0 0 -10242 -6828 10242 6828 )| O
| 0
(~75014.3]
0
= 4 FN
74976.6
| 49984.4

The exact solution can be obtained from the equilibrium conditions as
follows -

The force in element-2 is such that its vertical component 1s equal to the
applied load P. Horizontal component of this force is given by

P x (750/500) = 75000 N

R3_Y +P=0 or Rg_y = 50,000 N
R}-x + RI-X =0 or Rlﬁx =- Rg_x = 75,000 N

It can be seen that the approximate solution obtained by FEM is in close
agreement with the exact solution obtained from equilibrium consideration.




Example:

A concentrated load P = 50 kN is applied at the center of a fixed beam of length
3m, depth 200 mm and width 120 mm. Calculate the deflection and slope at the
mid point. Assume E =2 x 10° N/mm’.

lp

ﬁ-— 1500 —d¢— 1500 —-»|

ALY

Solution

The finite element model consists of 2 beam elements, as shown here, with
nodes 1 and 3 at the two fixed supports and node 2 at the location where load P
is applied.

1 2 3

(]

Stiffness matrices of elements 1 and 2 (connected by nodes 1 and 2 ; 2 and 3
respectively, each with L = 1500 mm) are given by,

- - _ -
[K]—E’z 6L 417 —6L 217| <XV XU 6L 4L —6L 21
L’ [-12 —6L 12 -6L 15 -12 —-6L 12 -6L

| oL 2E} —6L 42| | 6L 217 -6L  417]

Assembling the element stiffness matrices, we get

— a2 7 \

(P, | 12 6L 12 6L 0 0 T(w
M| 1202007 | 6L 4L 6L 2P 00
et 2 |-12 -6L 12412 -6L+6L -12 6L ||w,|
M, 1500° 6L 27 —6L+6L 4244l oL 20 ||o.
P, 0 o 12 6L 12 _16L||w,
LML | 0 0 6L 212 _6L 412 1o,




After applying boundary conditions v, = v; = 0 aud (6,); = (8,); = 0, the

equations reduce to
5 (1 20 x 200° )
p, | 10— 12412 —6L+6L][v,
M,| 1500° ~6L+6L 4L2 +4L7 {|(8,),
The applied loads are P,=— 50000 N and M, =0

3
Therefore, v, = 500001 5003 =-—0.4395mm
2x10% '20’1‘2200 x 24

and (6,),= 0

-PL P(2L)
24 EI 192 El
=—0.4395 mm

and the deflection being symmetric, slope at the center (0,); = 0.

Check : From strength of materials approach, v, =

Example:

Consider the bar shown in Fig. E3.4. An axial load P = 200 X 10° N is applied as shown.
Using the penalty approach for handling boundary conditions, do the following:

(a) Determine the nodal displacements.

(b) Determine the stress in each material.

(c) Determine the reaction forces.

~<——300 mm 400 mm
7
Y, 7
7 P %
- —
1 2 3
Z ©) 47
2 O
Aluminum Steel
A= 2400 mm? A,= 600 mm?

E,=70 X 10°N/m?>  E,=200 X 10° N/m?

FIGURE E3.4




Solution

(a) The element stiffness matrices are

1 2 < Global dof
70 X 10° X 2400[ 1 —1}
B -1

1
k 300 1
and
2 3
12 = 200 x 10* x 600 1 -1
400 —1 1

The structural stiffness matrix that is assembled from k' and k? is

1 2 3
0.56 —0.56

K =10° —0.56 0.86 —0.30
0 -0.30  0.30

The global load vector is

F = [0, 200 x 10, 0]"

Now dofs 1 and 3 are fixed. When using the penalty approach, therefore, a large
number C is added to the first and third diagonal elements of K. Choosing C based
on Eq.3.83, we get

C = [0.86 x 10°] x 10*

Thus, the modified stiffness matrix is

8600.56 —0.56 0
K =100 -056 086 —0.30
0 —0.30 8600.30

The finite element equations are given by

8600.56 —0.56 0 0, 0
10°f —-056 086 —0.30 K O, = ¢ 200 x 10°
0  —0.30 860030 || O 0

which yields the solution

Q = [15.1432 X 107°,0.23257,8.1127 X 10~°]" mm




(b) The element stresses (Eq. 3.19) are

ey 15.1432 X 107
=70 X 10° X ——[~1 1
. 300 }{ 0.23257 }

= 54.27 MPa

where 1 MPa = 10° N/m? = 1 N/mm?. Also,

5. 1 0.23257
9 = X P X ——
%, = 20 XX gl 1}{8.1127 X 106}

= —116.29 MPa

(c) The reaction forces are obtained from Eq. 3.78 as

R, = —CQ,
= —[0.86 X 10'°] X 15.1432 X 107"
= —130.23 x 10°
Also,
Ry = —€0s

— —[0.86 X 10'°] x 8.1127 X 107
= —69.77 X 10°N




Example:

In Fig. E3.5a,aload P = 60 X 10° N is applied as shown. Determine the displacement field,
stress, and support reactions in the body. Take E = 20 X 10° N/mm?®.

1.2 mm
e
250 mm?
~<—— Wall
%>+ \
—> P B' e B————>X
‘<—150 mm4>}<—150 mm-——- %

(a)

(b)
FIGURE E3.5

Solution In this problem, we should first determine whether contact occurs between the
bar and the wall, B. To do this, assume that the wall does not exist. Then, the solution to the
problem can be verified to be

QOp = 1.8 mm

where Qp is the displacement of point B'. From this result, we see that contact does occur.
The problem has to be resolved, since the boundary conditions are now different: The dis-
placement at B’ is specified to be 1.2 mm. Consider the two-element finite element model
in Fig. E3.5b. The boundary conditions are Q; = 0 and Q5 = 1.2 mm. The structural stiff-
ness matrix K is

=] 0

20 X 10° x 250
K = 150 — 2 —i
) a =1 1

and the global load vector F is

F = [0,60 x 10% 0]"




In the penalty approach, the boundary conditions Q; = 0 and Q5 = 1.2 imply the follow-
ing modifications: A large number C chosen here as C = (2/3) X 10 is added on to the
Ist and 3rd diagonal elements of K. Also, the number (C X 1.2) gets added on to the 3rd
component of F. Thus, the modified equations are

08 20000 -1 0 0y 0
; -1 2 -1 0; ¢ = % 600 x 10°
) 0 -1 20001 || O; 80.0 X 10’

The solution is
Q = [7.49985 X 107, 1.500045, 1.200015]" mm

The element stresses are

1 7.49985 X 107
o, =200 X 10° X —[-1 1}{ }

150 1500045
= 199.996 MPa
. 1500045
= X 10° X —[—
o = 2RI X gL 1]{1.200015}
= —40.004 MPa

The reaction forces are

R, = —C X 7.49985 x 107
= —49.999 x 10°N

and

Ry = —C X (1.200015 — 1.2)
— —10.001 X 10°N

The results obtained from the penalty approach have a small approximation error
due to the flexibility of the support introduced. In fact, the reader may verify that
the elimination approach for handling boundary conditions yields the exact reactions,

R, = —50.0 X 10°Nand Ry = —10.0 X 10°N. E
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